Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894895021> ?p ?o ?g. }
- W2894895021 endingPage "644" @default.
- W2894895021 startingPage "627" @default.
- W2894895021 abstract "Urban zoning enables various applications in land use analysis and urban planning. As cities evolve, it is important to constantly update the zoning maps of cities to reflect urban pattern changes. This paper proposes a method for automatic urban zoning using higher-order Markov random fields (HO-MRF) built on multi-view imagery data including street-view photos and top-view satellite images. In the proposed HO-MRF, top-view satellite data is segmented via a multi-scale deep convolutional neural network (MS-CNN) and used in lower-order potentials. Street-view data with geo-tagged information is augmented in higher-order potentials. Various feature types for classifying street-view images were also investigated in our work. We evaluated the proposed method on a number of famous metropolises and provided in-depth analysis on technical issues." @default.
- W2894895021 created "2018-10-12" @default.
- W2894895021 creator A5009550511 @default.
- W2894895021 creator A5018040823 @default.
- W2894895021 creator A5024634557 @default.
- W2894895021 creator A5027689970 @default.
- W2894895021 creator A5051861607 @default.
- W2894895021 creator A5072460783 @default.
- W2894895021 creator A5084967276 @default.
- W2894895021 date "2018-01-01" @default.
- W2894895021 modified "2023-10-01" @default.
- W2894895021 title "Urban Zoning Using Higher-Order Markov Random Fields on Multi-View Imagery Data" @default.
- W2894895021 cites W1516111018 @default.
- W2894895021 cites W1525292367 @default.
- W2894895021 cites W1566135517 @default.
- W2894895021 cites W1937812750 @default.
- W2894895021 cites W1946093182 @default.
- W2894895021 cites W1963860205 @default.
- W2894895021 cites W1969732403 @default.
- W2894895021 cites W1994733825 @default.
- W2894895021 cites W2013667252 @default.
- W2894895021 cites W2014045522 @default.
- W2894895021 cites W2015386604 @default.
- W2894895021 cites W2019400799 @default.
- W2894895021 cites W2022508996 @default.
- W2894895021 cites W2025268122 @default.
- W2894895021 cites W2028044334 @default.
- W2894895021 cites W2035822736 @default.
- W2894895021 cites W2039051707 @default.
- W2894895021 cites W2055132753 @default.
- W2894895021 cites W2068883041 @default.
- W2894895021 cites W2070126535 @default.
- W2894895021 cites W2086225343 @default.
- W2894895021 cites W2087475273 @default.
- W2894895021 cites W2108394867 @default.
- W2894895021 cites W2120533912 @default.
- W2894895021 cites W2121437573 @default.
- W2894895021 cites W2121915926 @default.
- W2894895021 cites W2140804075 @default.
- W2894895021 cites W2285134694 @default.
- W2894895021 cites W2464204616 @default.
- W2894895021 cites W2478090196 @default.
- W2894895021 cites W2487087946 @default.
- W2894895021 cites W265421414 @default.
- W2894895021 cites W2911964244 @default.
- W2894895021 cites W2963126277 @default.
- W2894895021 cites W3105127913 @default.
- W2894895021 cites W4293052541 @default.
- W2894895021 doi "https://doi.org/10.1007/978-3-030-01237-3_38" @default.
- W2894895021 hasPublicationYear "2018" @default.
- W2894895021 type Work @default.
- W2894895021 sameAs 2894895021 @default.
- W2894895021 citedByCount "10" @default.
- W2894895021 countsByYear W28948950212019 @default.
- W2894895021 countsByYear W28948950212020 @default.
- W2894895021 countsByYear W28948950212021 @default.
- W2894895021 countsByYear W28948950212022 @default.
- W2894895021 countsByYear W28948950212023 @default.
- W2894895021 crossrefType "book-chapter" @default.
- W2894895021 hasAuthorship W2894895021A5009550511 @default.
- W2894895021 hasAuthorship W2894895021A5018040823 @default.
- W2894895021 hasAuthorship W2894895021A5024634557 @default.
- W2894895021 hasAuthorship W2894895021A5027689970 @default.
- W2894895021 hasAuthorship W2894895021A5051861607 @default.
- W2894895021 hasAuthorship W2894895021A5072460783 @default.
- W2894895021 hasAuthorship W2894895021A5084967276 @default.
- W2894895021 hasConcept C10138342 @default.
- W2894895021 hasConcept C115961682 @default.
- W2894895021 hasConcept C119857082 @default.
- W2894895021 hasConcept C124504099 @default.
- W2894895021 hasConcept C138885662 @default.
- W2894895021 hasConcept C154945302 @default.
- W2894895021 hasConcept C162324750 @default.
- W2894895021 hasConcept C17744445 @default.
- W2894895021 hasConcept C182306322 @default.
- W2894895021 hasConcept C18903297 @default.
- W2894895021 hasConcept C199539241 @default.
- W2894895021 hasConcept C205649164 @default.
- W2894895021 hasConcept C2776401178 @default.
- W2894895021 hasConcept C2778045648 @default.
- W2894895021 hasConcept C2778102629 @default.
- W2894895021 hasConcept C2778755073 @default.
- W2894895021 hasConcept C41008148 @default.
- W2894895021 hasConcept C41895202 @default.
- W2894895021 hasConcept C49545453 @default.
- W2894895021 hasConcept C520944541 @default.
- W2894895021 hasConcept C58640448 @default.
- W2894895021 hasConcept C62649853 @default.
- W2894895021 hasConcept C81363708 @default.
- W2894895021 hasConcept C86803240 @default.
- W2894895021 hasConcept C98763669 @default.
- W2894895021 hasConceptScore W2894895021C10138342 @default.
- W2894895021 hasConceptScore W2894895021C115961682 @default.
- W2894895021 hasConceptScore W2894895021C119857082 @default.
- W2894895021 hasConceptScore W2894895021C124504099 @default.
- W2894895021 hasConceptScore W2894895021C138885662 @default.
- W2894895021 hasConceptScore W2894895021C154945302 @default.
- W2894895021 hasConceptScore W2894895021C162324750 @default.