Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894895551> ?p ?o ?g. }
- W2894895551 endingPage "2113" @default.
- W2894895551 startingPage "2095" @default.
- W2894895551 abstract "Abstract. We combined a chemistry transport model (the Weather Research and Forecasting and the Models-3 Community Multi-scale Air Quality Model, WRF/CMAQ), a multiple regression model, and available ground observations to optimize black carbon (BC) emissions at monthly, emission sector, and city cluster level. We derived top-down emissions and reduced deviations between simulations and observations for the southern Jiangsu city cluster, a typical developed region of eastern China. Scaled from a high-resolution inventory for 2012 based on changes in activity levels, the BC emissions in southern Jiangsu were calculated at 27.0 Gg yr−1 for 2015 (JS-prior). The annual mean concentration of BC at Xianlin Campus of Nanjing University (NJU, a suburban site) was simulated at 3.4 µg m−3, 11 % lower than the observed 3.8 µg m−3. In contrast, it was simulated at 3.4 µg m−3 at Jiangsu Provincial Academy of Environmental Science (PAES, an urban site), 36 % higher than the observed 2.5 µg m−3. The discrepancies at the two sites implied the uncertainty of the bottom-up inventory of BC emissions. Assuming a near-linear response of BC concentrations to emission changes, we applied a multiple regression model to fit the hourly surface concentrations of BC at the two sites, based on the detailed source contributions to ambient BC levels from brute-force simulation. Constrained with this top-down method, BC emissions were estimated at 13.4 Gg yr−1 (JS-posterior), 50 % smaller than the bottom-up estimate, and stronger seasonal variations were found. Biases between simulations and observations were reduced for most months at the two sites when JS-posterior was applied. At PAES, in particular, the simulated annual mean declined to 2.6 µg m−3 and the annual normalized mean error (NME) decreased from 72.0 % to 57.6 %. However, application of JS-posterior slightly enhanced NMEs in July and October at NJU where simulated concentrations with JS-prior were lower than observations, implying that reduction in total emissions could not correct modeling underestimation. The effects of the observation site, including numbers and spatial representativeness on the top-down estimate, were further quantified. The best modeling performance was obtained when observations of both sites were used with their difference in spatial functions considered in emission constraining. Given the limited BC observation data in the area, therefore, more measurements with better spatiotemporal coverage were recommended for constraining BC emissions effectively. Top-down estimates derived from JS-prior and the Multi-resolution Emission Inventory for China (MEIC) were compared to test the sensitivity of the method to the a priori emission input. The differences in emission levels, spatial distributions, and modeling performances were largely reduced after constraining, implying that the impact of the a priori inventory was limited on the top-down estimate. Sensitivity analysis proved the rationality of the near-linearity assumption between emissions and concentrations, and the impact of wet deposition on the multiple regression model was demonstrated to be moderate through data screening based on simulated wet deposition and satellite-derived precipitation." @default.
- W2894895551 created "2018-10-12" @default.
- W2894895551 creator A5016378845 @default.
- W2894895551 creator A5056788729 @default.
- W2894895551 creator A5073501391 @default.
- W2894895551 creator A5077945577 @default.
- W2894895551 creator A5078356354 @default.
- W2894895551 date "2019-02-18" @default.
- W2894895551 modified "2023-10-09" @default.
- W2894895551 title "Top-down estimate of black carbon emissions for city clusters using ground observations: a case study in southern Jiangsu, China" @default.
- W2894895551 cites W1486823541 @default.
- W2894895551 cites W1488605052 @default.
- W2894895551 cites W1504551388 @default.
- W2894895551 cites W1553669260 @default.
- W2894895551 cites W1560749659 @default.
- W2894895551 cites W1637434872 @default.
- W2894895551 cites W1856541619 @default.
- W2894895551 cites W1907369419 @default.
- W2894895551 cites W1973159294 @default.
- W2894895551 cites W1983146165 @default.
- W2894895551 cites W2028999185 @default.
- W2894895551 cites W2029579889 @default.
- W2894895551 cites W2037768184 @default.
- W2894895551 cites W2054036271 @default.
- W2894895551 cites W2058256848 @default.
- W2894895551 cites W2070533532 @default.
- W2894895551 cites W2074111307 @default.
- W2894895551 cites W2074599408 @default.
- W2894895551 cites W2083985768 @default.
- W2894895551 cites W2087406086 @default.
- W2894895551 cites W2102948292 @default.
- W2894895551 cites W2117560289 @default.
- W2894895551 cites W2132002340 @default.
- W2894895551 cites W2133082921 @default.
- W2894895551 cites W2133560562 @default.
- W2894895551 cites W2134939566 @default.
- W2894895551 cites W2138373515 @default.
- W2894895551 cites W2140805694 @default.
- W2894895551 cites W2143993673 @default.
- W2894895551 cites W2147185456 @default.
- W2894895551 cites W2149900683 @default.
- W2894895551 cites W2158989459 @default.
- W2894895551 cites W2164231461 @default.
- W2894895551 cites W2164268820 @default.
- W2894895551 cites W2176494765 @default.
- W2894895551 cites W2250784915 @default.
- W2894895551 cites W2322097928 @default.
- W2894895551 cites W2339599227 @default.
- W2894895551 cites W2413950589 @default.
- W2894895551 cites W2518286188 @default.
- W2894895551 cites W2532497793 @default.
- W2894895551 cites W2568707767 @default.
- W2894895551 cites W2613186462 @default.
- W2894895551 cites W2727192317 @default.
- W2894895551 cites W2738713825 @default.
- W2894895551 cites W2765512773 @default.
- W2894895551 cites W2789427148 @default.
- W2894895551 cites W2803306757 @default.
- W2894895551 cites W2808975848 @default.
- W2894895551 doi "https://doi.org/10.5194/acp-19-2095-2019" @default.
- W2894895551 hasPublicationYear "2019" @default.
- W2894895551 type Work @default.
- W2894895551 sameAs 2894895551 @default.
- W2894895551 citedByCount "5" @default.
- W2894895551 countsByYear W28948955512019 @default.
- W2894895551 countsByYear W28948955512021 @default.
- W2894895551 countsByYear W28948955512022 @default.
- W2894895551 crossrefType "journal-article" @default.
- W2894895551 hasAuthorship W2894895551A5016378845 @default.
- W2894895551 hasAuthorship W2894895551A5056788729 @default.
- W2894895551 hasAuthorship W2894895551A5073501391 @default.
- W2894895551 hasAuthorship W2894895551A5077945577 @default.
- W2894895551 hasAuthorship W2894895551A5078356354 @default.
- W2894895551 hasBestOaLocation W28948955511 @default.
- W2894895551 hasConcept C107054158 @default.
- W2894895551 hasConcept C111368507 @default.
- W2894895551 hasConcept C126314574 @default.
- W2894895551 hasConcept C127313418 @default.
- W2894895551 hasConcept C133204551 @default.
- W2894895551 hasConcept C153294291 @default.
- W2894895551 hasConcept C166957645 @default.
- W2894895551 hasConcept C191935318 @default.
- W2894895551 hasConcept C205649164 @default.
- W2894895551 hasConcept C2776720842 @default.
- W2894895551 hasConcept C2776845762 @default.
- W2894895551 hasConcept C2777517185 @default.
- W2894895551 hasConcept C39432304 @default.
- W2894895551 hasConcept C47737302 @default.
- W2894895551 hasConcept C49204034 @default.
- W2894895551 hasConcept C91586092 @default.
- W2894895551 hasConceptScore W2894895551C107054158 @default.
- W2894895551 hasConceptScore W2894895551C111368507 @default.
- W2894895551 hasConceptScore W2894895551C126314574 @default.
- W2894895551 hasConceptScore W2894895551C127313418 @default.
- W2894895551 hasConceptScore W2894895551C133204551 @default.
- W2894895551 hasConceptScore W2894895551C153294291 @default.
- W2894895551 hasConceptScore W2894895551C166957645 @default.
- W2894895551 hasConceptScore W2894895551C191935318 @default.