Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894901512> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2894901512 endingPage "127" @default.
- W2894901512 startingPage "115" @default.
- W2894901512 abstract "Long queues often happen on toll roads, especially at the tollgates. These create many problems including having an impact on the regular roads nearby. If travel time and traffic volume at the tollgates can be predicted accurately in advance, this would allow traffic authorities to take appropriate measures to improve traffic flow and the safety of road users. This paper describes a novel combination of scaling methods with Support Vector Machines for Regression (SVR) for travel time and tollgate volume prediction tasks, as part of the Knowledge Discovery and Data Mining (KDD) Cup 2017. A new method is introduced to handle missing data by utilising the structure of the road network. Moreover, experiments with reduced data were conducted to evaluate whether the conclusions from combining scaling methods with SVR could be generalised." @default.
- W2894901512 created "2018-10-12" @default.
- W2894901512 creator A5042367809 @default.
- W2894901512 creator A5072337029 @default.
- W2894901512 creator A5089339336 @default.
- W2894901512 date "2018-01-01" @default.
- W2894901512 modified "2023-09-26" @default.
- W2894901512 title "Using Scaling Methods to Improve Support Vector Regression’s Performance for Travel Time and Traffic Volume Predictions" @default.
- W2894901512 cites W1964357740 @default.
- W2894901512 cites W1971757341 @default.
- W2894901512 cites W1985817801 @default.
- W2894901512 cites W2028336648 @default.
- W2894901512 cites W2039935421 @default.
- W2894901512 cites W2066995518 @default.
- W2894901512 cites W2069929199 @default.
- W2894901512 cites W2158994553 @default.
- W2894901512 doi "https://doi.org/10.1007/978-3-319-96944-2_8" @default.
- W2894901512 hasPublicationYear "2018" @default.
- W2894901512 type Work @default.
- W2894901512 sameAs 2894901512 @default.
- W2894901512 citedByCount "3" @default.
- W2894901512 countsByYear W28949015122021 @default.
- W2894901512 countsByYear W28949015122022 @default.
- W2894901512 countsByYear W28949015122023 @default.
- W2894901512 crossrefType "book-chapter" @default.
- W2894901512 hasAuthorship W2894901512A5042367809 @default.
- W2894901512 hasAuthorship W2894901512A5072337029 @default.
- W2894901512 hasAuthorship W2894901512A5089339336 @default.
- W2894901512 hasBestOaLocation W28949015122 @default.
- W2894901512 hasConcept C105795698 @default.
- W2894901512 hasConcept C119857082 @default.
- W2894901512 hasConcept C121332964 @default.
- W2894901512 hasConcept C12267149 @default.
- W2894901512 hasConcept C124101348 @default.
- W2894901512 hasConcept C127413603 @default.
- W2894901512 hasConcept C160403385 @default.
- W2894901512 hasConcept C168443057 @default.
- W2894901512 hasConcept C20556612 @default.
- W2894901512 hasConcept C207512268 @default.
- W2894901512 hasConcept C22212356 @default.
- W2894901512 hasConcept C2524010 @default.
- W2894901512 hasConcept C2778025104 @default.
- W2894901512 hasConcept C2985733770 @default.
- W2894901512 hasConcept C31258907 @default.
- W2894901512 hasConcept C33923547 @default.
- W2894901512 hasConcept C38652104 @default.
- W2894901512 hasConcept C41008148 @default.
- W2894901512 hasConcept C54355233 @default.
- W2894901512 hasConcept C62520636 @default.
- W2894901512 hasConcept C83546350 @default.
- W2894901512 hasConcept C86803240 @default.
- W2894901512 hasConcept C99844830 @default.
- W2894901512 hasConceptScore W2894901512C105795698 @default.
- W2894901512 hasConceptScore W2894901512C119857082 @default.
- W2894901512 hasConceptScore W2894901512C121332964 @default.
- W2894901512 hasConceptScore W2894901512C12267149 @default.
- W2894901512 hasConceptScore W2894901512C124101348 @default.
- W2894901512 hasConceptScore W2894901512C127413603 @default.
- W2894901512 hasConceptScore W2894901512C160403385 @default.
- W2894901512 hasConceptScore W2894901512C168443057 @default.
- W2894901512 hasConceptScore W2894901512C20556612 @default.
- W2894901512 hasConceptScore W2894901512C207512268 @default.
- W2894901512 hasConceptScore W2894901512C22212356 @default.
- W2894901512 hasConceptScore W2894901512C2524010 @default.
- W2894901512 hasConceptScore W2894901512C2778025104 @default.
- W2894901512 hasConceptScore W2894901512C2985733770 @default.
- W2894901512 hasConceptScore W2894901512C31258907 @default.
- W2894901512 hasConceptScore W2894901512C33923547 @default.
- W2894901512 hasConceptScore W2894901512C38652104 @default.
- W2894901512 hasConceptScore W2894901512C41008148 @default.
- W2894901512 hasConceptScore W2894901512C54355233 @default.
- W2894901512 hasConceptScore W2894901512C62520636 @default.
- W2894901512 hasConceptScore W2894901512C83546350 @default.
- W2894901512 hasConceptScore W2894901512C86803240 @default.
- W2894901512 hasConceptScore W2894901512C99844830 @default.
- W2894901512 hasLocation W28949015121 @default.
- W2894901512 hasLocation W28949015122 @default.
- W2894901512 hasOpenAccess W2894901512 @default.
- W2894901512 hasPrimaryLocation W28949015121 @default.
- W2894901512 hasRelatedWork W2004665460 @default.
- W2894901512 hasRelatedWork W2278072012 @default.
- W2894901512 hasRelatedWork W2349767157 @default.
- W2894901512 hasRelatedWork W2359483147 @default.
- W2894901512 hasRelatedWork W2894901512 @default.
- W2894901512 hasRelatedWork W2909177111 @default.
- W2894901512 hasRelatedWork W2994955208 @default.
- W2894901512 hasRelatedWork W3016170207 @default.
- W2894901512 hasRelatedWork W3037844405 @default.
- W2894901512 hasRelatedWork W574135781 @default.
- W2894901512 isParatext "false" @default.
- W2894901512 isRetracted "false" @default.
- W2894901512 magId "2894901512" @default.
- W2894901512 workType "book-chapter" @default.