Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894906274> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2894906274 abstract "The Evidence-Based Medicine (EBM) is emerged as the helpful practice for medical practitioners to make decisions with available shreds of evidence along with their professional ex-pertise. In EBM, the medical practitioners suggest the medication on the basis of underlying information of patients descriptions and medical records (mostly available in textual form). This paper presents a novel and efficient method for predicting the correct disease. Since these type of tasks are generally accounted as the multi-class classifying problem, therefore, a large number of records are needed, so a large number of records will be entertained in higher n-dimensional space. Our system, as proposed in this paper, will utilise the key-phrases extraction techniques to scoop out the meaningful information to reduce the size of textual dimension, and, the suite of machine learning algorithms for classifying the diseases efficiently. We have tested the proposed approach on 6 different diseases i.e. Asthma, Hypertension, Diabetes, Fever, Abdominal issues, and Heart problems over the dataset of 690 patients. With key-phrases tested in the range [3,7] features, SVM has shown the highest (93.34%, 95%) F1-score and accuracy." @default.
- W2894906274 created "2018-10-12" @default.
- W2894906274 creator A5024811407 @default.
- W2894906274 creator A5047462952 @default.
- W2894906274 creator A5052621616 @default.
- W2894906274 date "2018-01-01" @default.
- W2894906274 modified "2023-10-18" @default.
- W2894906274 title "Developing Disease Classification System based on Keyword Extraction and Supervised Learning" @default.
- W2894906274 doi "https://doi.org/10.14569/ijacsa.2018.090976" @default.
- W2894906274 hasPublicationYear "2018" @default.
- W2894906274 type Work @default.
- W2894906274 sameAs 2894906274 @default.
- W2894906274 citedByCount "2" @default.
- W2894906274 countsByYear W28949062742020 @default.
- W2894906274 countsByYear W28949062742021 @default.
- W2894906274 crossrefType "journal-article" @default.
- W2894906274 hasAuthorship W2894906274A5024811407 @default.
- W2894906274 hasAuthorship W2894906274A5047462952 @default.
- W2894906274 hasAuthorship W2894906274A5052621616 @default.
- W2894906274 hasBestOaLocation W28949062741 @default.
- W2894906274 hasConcept C111919701 @default.
- W2894906274 hasConcept C119857082 @default.
- W2894906274 hasConcept C12267149 @default.
- W2894906274 hasConcept C123860398 @default.
- W2894906274 hasConcept C126838900 @default.
- W2894906274 hasConcept C136389625 @default.
- W2894906274 hasConcept C154945302 @default.
- W2894906274 hasConcept C166957645 @default.
- W2894906274 hasConcept C195807954 @default.
- W2894906274 hasConcept C195910791 @default.
- W2894906274 hasConcept C202444582 @default.
- W2894906274 hasConcept C204321447 @default.
- W2894906274 hasConcept C23123220 @default.
- W2894906274 hasConcept C26517878 @default.
- W2894906274 hasConcept C2777212361 @default.
- W2894906274 hasConcept C2779427698 @default.
- W2894906274 hasConcept C33676613 @default.
- W2894906274 hasConcept C33923547 @default.
- W2894906274 hasConcept C38652104 @default.
- W2894906274 hasConcept C41008148 @default.
- W2894906274 hasConcept C50644808 @default.
- W2894906274 hasConcept C71924100 @default.
- W2894906274 hasConcept C79581498 @default.
- W2894906274 hasConcept C95457728 @default.
- W2894906274 hasConceptScore W2894906274C111919701 @default.
- W2894906274 hasConceptScore W2894906274C119857082 @default.
- W2894906274 hasConceptScore W2894906274C12267149 @default.
- W2894906274 hasConceptScore W2894906274C123860398 @default.
- W2894906274 hasConceptScore W2894906274C126838900 @default.
- W2894906274 hasConceptScore W2894906274C136389625 @default.
- W2894906274 hasConceptScore W2894906274C154945302 @default.
- W2894906274 hasConceptScore W2894906274C166957645 @default.
- W2894906274 hasConceptScore W2894906274C195807954 @default.
- W2894906274 hasConceptScore W2894906274C195910791 @default.
- W2894906274 hasConceptScore W2894906274C202444582 @default.
- W2894906274 hasConceptScore W2894906274C204321447 @default.
- W2894906274 hasConceptScore W2894906274C23123220 @default.
- W2894906274 hasConceptScore W2894906274C26517878 @default.
- W2894906274 hasConceptScore W2894906274C2777212361 @default.
- W2894906274 hasConceptScore W2894906274C2779427698 @default.
- W2894906274 hasConceptScore W2894906274C33676613 @default.
- W2894906274 hasConceptScore W2894906274C33923547 @default.
- W2894906274 hasConceptScore W2894906274C38652104 @default.
- W2894906274 hasConceptScore W2894906274C41008148 @default.
- W2894906274 hasConceptScore W2894906274C50644808 @default.
- W2894906274 hasConceptScore W2894906274C71924100 @default.
- W2894906274 hasConceptScore W2894906274C79581498 @default.
- W2894906274 hasConceptScore W2894906274C95457728 @default.
- W2894906274 hasIssue "9" @default.
- W2894906274 hasLocation W28949062741 @default.
- W2894906274 hasOpenAccess W2894906274 @default.
- W2894906274 hasPrimaryLocation W28949062741 @default.
- W2894906274 hasRelatedWork W2101819884 @default.
- W2894906274 hasRelatedWork W2894906274 @default.
- W2894906274 hasRelatedWork W2937631562 @default.
- W2894906274 hasRelatedWork W3105251098 @default.
- W2894906274 hasRelatedWork W3107474891 @default.
- W2894906274 hasRelatedWork W3136979370 @default.
- W2894906274 hasRelatedWork W3156382566 @default.
- W2894906274 hasRelatedWork W3194539120 @default.
- W2894906274 hasRelatedWork W4205958290 @default.
- W2894906274 hasRelatedWork W4361795583 @default.
- W2894906274 hasVolume "9" @default.
- W2894906274 isParatext "false" @default.
- W2894906274 isRetracted "false" @default.
- W2894906274 magId "2894906274" @default.
- W2894906274 workType "article" @default.