Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894906331> ?p ?o ?g. }
- W2894906331 endingPage "117" @default.
- W2894906331 startingPage "99" @default.
- W2894906331 abstract "Abstract Presence of optimal levels of dissolved oxygen (above critical level of 4.5 mg L−1) and presence of zooplankton community are indicators of good water quality of an aquatic ecosystem and also of the health of the same. Reservoirs being artificially created water bodies present hybrid systems containing features of both lotic and lentic systems and thus have unique organization that are representative of both rivers and lakes. Since any reservoir is primarily a fresh water system, presence of a large array of zooplankton (diverse community structure) implies its good health and also presence of optimal dissolved oxygen levels supports sustenance of life. In this study, artificial neural network modelling approach has been utilized to predict the level of dissolved oxygen and zooplankton abundance in the Bakreswar reservoir and their variation in relation to the environmental factors. Use of neural network modelling is exceedingly capable of determining correlation among apparently non correlated environmental data and in the current study these are capable of accurately predicting the variations in the levels of dissolved oxygen as well as the abundance of zooplankton. From this study, it has been observed that chemical factors like productivity, nitrates, salinity, pH, phosphates, total dissolved solids, etc. are mostly responsible for control of dissolved oxygen and zooplankton variation at certain points of the study site (stations 1 and 3) whereas at other points (station 2) physical factors like solar radiation, humidity, etc. are more effective. These models are capable of finding the important environmental controllers of such variations and prove to be a powerful alternative to traditional approaches like multiple regression analysis." @default.
- W2894906331 created "2018-10-12" @default.
- W2894906331 creator A5007701824 @default.
- W2894906331 creator A5010074402 @default.
- W2894906331 creator A5022755137 @default.
- W2894906331 creator A5082083172 @default.
- W2894906331 date "2019-05-01" @default.
- W2894906331 modified "2023-09-29" @default.
- W2894906331 title "Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach" @default.
- W2894906331 cites W144850212 @default.
- W2894906331 cites W1543335190 @default.
- W2894906331 cites W1924611969 @default.
- W2894906331 cites W1967299434 @default.
- W2894906331 cites W1971676209 @default.
- W2894906331 cites W1971901916 @default.
- W2894906331 cites W1979344016 @default.
- W2894906331 cites W1980533847 @default.
- W2894906331 cites W1982344223 @default.
- W2894906331 cites W1983373379 @default.
- W2894906331 cites W1988736555 @default.
- W2894906331 cites W1989767924 @default.
- W2894906331 cites W1993227717 @default.
- W2894906331 cites W1994152871 @default.
- W2894906331 cites W1998597433 @default.
- W2894906331 cites W1998613416 @default.
- W2894906331 cites W2006511854 @default.
- W2894906331 cites W2009288088 @default.
- W2894906331 cites W2011307488 @default.
- W2894906331 cites W2017978747 @default.
- W2894906331 cites W2018587419 @default.
- W2894906331 cites W2023287382 @default.
- W2894906331 cites W2023559070 @default.
- W2894906331 cites W2024375758 @default.
- W2894906331 cites W2024520223 @default.
- W2894906331 cites W2028247172 @default.
- W2894906331 cites W2029016233 @default.
- W2894906331 cites W2030113236 @default.
- W2894906331 cites W2034634183 @default.
- W2894906331 cites W2035737450 @default.
- W2894906331 cites W2036339596 @default.
- W2894906331 cites W2043857422 @default.
- W2894906331 cites W2044042146 @default.
- W2894906331 cites W2046173102 @default.
- W2894906331 cites W2049240225 @default.
- W2894906331 cites W2050722398 @default.
- W2894906331 cites W2051888623 @default.
- W2894906331 cites W2056116149 @default.
- W2894906331 cites W2060773627 @default.
- W2894906331 cites W2062975094 @default.
- W2894906331 cites W2063691408 @default.
- W2894906331 cites W2064935143 @default.
- W2894906331 cites W2073424283 @default.
- W2894906331 cites W2077011856 @default.
- W2894906331 cites W2077244366 @default.
- W2894906331 cites W2078134421 @default.
- W2894906331 cites W2080184475 @default.
- W2894906331 cites W2081613882 @default.
- W2894906331 cites W2082409306 @default.
- W2894906331 cites W2086793904 @default.
- W2894906331 cites W2089082046 @default.
- W2894906331 cites W2103604311 @default.
- W2894906331 cites W2114357073 @default.
- W2894906331 cites W2121394390 @default.
- W2894906331 cites W2122017802 @default.
- W2894906331 cites W2122891568 @default.
- W2894906331 cites W2124292443 @default.
- W2894906331 cites W2125372574 @default.
- W2894906331 cites W2133120170 @default.
- W2894906331 cites W2137983211 @default.
- W2894906331 cites W2139482802 @default.
- W2894906331 cites W2167475920 @default.
- W2894906331 cites W2170290765 @default.
- W2894906331 cites W218164640 @default.
- W2894906331 cites W2239361996 @default.
- W2894906331 cites W2253353872 @default.
- W2894906331 cites W2296210273 @default.
- W2894906331 cites W2460964597 @default.
- W2894906331 cites W2466222431 @default.
- W2894906331 cites W2536291728 @default.
- W2894906331 cites W2549970001 @default.
- W2894906331 cites W2607827435 @default.
- W2894906331 cites W2615170999 @default.
- W2894906331 cites W2760412635 @default.
- W2894906331 cites W309511071 @default.
- W2894906331 cites W4248549850 @default.
- W2894906331 doi "https://doi.org/10.1016/j.ecolind.2018.09.051" @default.
- W2894906331 hasPublicationYear "2019" @default.
- W2894906331 type Work @default.
- W2894906331 sameAs 2894906331 @default.
- W2894906331 citedByCount "48" @default.
- W2894906331 countsByYear W28949063312020 @default.
- W2894906331 countsByYear W28949063312021 @default.
- W2894906331 countsByYear W28949063312022 @default.
- W2894906331 countsByYear W28949063312023 @default.
- W2894906331 crossrefType "journal-article" @default.
- W2894906331 hasAuthorship W2894906331A5007701824 @default.
- W2894906331 hasAuthorship W2894906331A5010074402 @default.
- W2894906331 hasAuthorship W2894906331A5022755137 @default.