Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894912139> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2894912139 abstract "The inherent diversity of human behavior limits the capabilities of general large-scale machine learning systems, that usually require ample amounts of data to provide robust descriptors of the outcomes of interest. Motivated by this challenge, personalized and population-specific models comprise a promising line of work for representing human behavior, since they can make decisions for clusters of people with common characteristics, reducing the amount of data needed for training. We propose a multi-task learning (MTL) framework for developing population-specific models of interpersonal conflict between couples using ambulatory sensor and mobile data from real-life interactions. The criteria for population clustering include global indices related to couples' relationship quality and attachment style, person-specific factors of partners' positivity, negativity, and stress levels, as well as fluctuating factors of daily emotional arousal obtained from acoustic and physiological indices. Population-specific information is incorporated through a MTL feed-forward neural network (FF-NN), whose first layers capture the common information across all data samples, while its last layers are specific to the unique characteristics of each population. Our results indicate that the proposed MTL FF-NN trained solely on the sensor-based acoustic, linguistic, and physiological modalities provides unweighted and weighted F1-scores of 0.51 and 0.75, respectively, outperforming the corresponding baselines of a single general FF-NN trained on the entire dataset and separate FF-NNs trained on each population cluster individually. These demonstrate the feasibility of such ambulatory systems for detecting real-life behaviors and possibly intervening upon them, and highlights the importance of taking into account the inherent diversity of different populations from the general pool of data." @default.
- W2894912139 created "2018-10-12" @default.
- W2894912139 creator A5022807203 @default.
- W2894912139 creator A5029799530 @default.
- W2894912139 creator A5037074489 @default.
- W2894912139 creator A5065972758 @default.
- W2894912139 creator A5079362017 @default.
- W2894912139 creator A5087005015 @default.
- W2894912139 date "2018-10-02" @default.
- W2894912139 modified "2023-09-23" @default.
- W2894912139 title "Population-specific Detection of Couples' Interpersonal Conflict using Multi-task Learning" @default.
- W2894912139 cites W1959793791 @default.
- W2894912139 cites W1996299251 @default.
- W2894912139 cites W2014399678 @default.
- W2894912139 cites W2029887827 @default.
- W2894912139 cites W2066351416 @default.
- W2894912139 cites W2083945342 @default.
- W2894912139 cites W2088154855 @default.
- W2894912139 cites W2090465764 @default.
- W2894912139 cites W2124929530 @default.
- W2894912139 cites W2126574516 @default.
- W2894912139 cites W2128960895 @default.
- W2894912139 cites W2130938867 @default.
- W2894912139 cites W2148143831 @default.
- W2894912139 cites W2157570848 @default.
- W2894912139 cites W2160009005 @default.
- W2894912139 cites W2261525379 @default.
- W2894912139 cites W2314785176 @default.
- W2894912139 cites W2324606881 @default.
- W2894912139 cites W2341536223 @default.
- W2894912139 cites W2514641984 @default.
- W2894912139 cites W2519188366 @default.
- W2894912139 cites W2549346488 @default.
- W2894912139 cites W2560629614 @default.
- W2894912139 cites W2598831904 @default.
- W2894912139 cites W2624890099 @default.
- W2894912139 cites W2786347533 @default.
- W2894912139 cites W2962911949 @default.
- W2894912139 cites W2963665779 @default.
- W2894912139 cites W4292994367 @default.
- W2894912139 cites W4297311594 @default.
- W2894912139 doi "https://doi.org/10.1145/3242969.3243007" @default.
- W2894912139 hasPublicationYear "2018" @default.
- W2894912139 type Work @default.
- W2894912139 sameAs 2894912139 @default.
- W2894912139 citedByCount "4" @default.
- W2894912139 countsByYear W28949121392020 @default.
- W2894912139 countsByYear W28949121392021 @default.
- W2894912139 countsByYear W28949121392022 @default.
- W2894912139 crossrefType "proceedings-article" @default.
- W2894912139 hasAuthorship W2894912139A5022807203 @default.
- W2894912139 hasAuthorship W2894912139A5029799530 @default.
- W2894912139 hasAuthorship W2894912139A5037074489 @default.
- W2894912139 hasAuthorship W2894912139A5065972758 @default.
- W2894912139 hasAuthorship W2894912139A5079362017 @default.
- W2894912139 hasAuthorship W2894912139A5087005015 @default.
- W2894912139 hasBestOaLocation W28949121391 @default.
- W2894912139 hasConcept C127413603 @default.
- W2894912139 hasConcept C144024400 @default.
- W2894912139 hasConcept C149923435 @default.
- W2894912139 hasConcept C154945302 @default.
- W2894912139 hasConcept C15744967 @default.
- W2894912139 hasConcept C164850336 @default.
- W2894912139 hasConcept C201995342 @default.
- W2894912139 hasConcept C2780451532 @default.
- W2894912139 hasConcept C2908647359 @default.
- W2894912139 hasConcept C41008148 @default.
- W2894912139 hasConcept C77805123 @default.
- W2894912139 hasConceptScore W2894912139C127413603 @default.
- W2894912139 hasConceptScore W2894912139C144024400 @default.
- W2894912139 hasConceptScore W2894912139C149923435 @default.
- W2894912139 hasConceptScore W2894912139C154945302 @default.
- W2894912139 hasConceptScore W2894912139C15744967 @default.
- W2894912139 hasConceptScore W2894912139C164850336 @default.
- W2894912139 hasConceptScore W2894912139C201995342 @default.
- W2894912139 hasConceptScore W2894912139C2780451532 @default.
- W2894912139 hasConceptScore W2894912139C2908647359 @default.
- W2894912139 hasConceptScore W2894912139C41008148 @default.
- W2894912139 hasConceptScore W2894912139C77805123 @default.
- W2894912139 hasFunder F4320306076 @default.
- W2894912139 hasLocation W28949121391 @default.
- W2894912139 hasOpenAccess W2894912139 @default.
- W2894912139 hasPrimaryLocation W28949121391 @default.
- W2894912139 hasRelatedWork W1607472309 @default.
- W2894912139 hasRelatedWork W2081647779 @default.
- W2894912139 hasRelatedWork W2364218737 @default.
- W2894912139 hasRelatedWork W2370597599 @default.
- W2894912139 hasRelatedWork W2748952813 @default.
- W2894912139 hasRelatedWork W2899084033 @default.
- W2894912139 hasRelatedWork W3107474891 @default.
- W2894912139 hasRelatedWork W3128051602 @default.
- W2894912139 hasRelatedWork W3217387898 @default.
- W2894912139 hasRelatedWork W4237750775 @default.
- W2894912139 isParatext "false" @default.
- W2894912139 isRetracted "false" @default.
- W2894912139 magId "2894912139" @default.
- W2894912139 workType "article" @default.