Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894914645> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2894914645 endingPage "98" @default.
- W2894914645 startingPage "87" @default.
- W2894914645 abstract "Missing data consists in the lack of information in a dataset and since it directly influences classification performance, neglecting it is not a valid option. Over the years, several studies presented alternative imputation strategies to deal with the three missing data mechanisms, Missing Completely At Random, Missing At Random and Missing Not At Random. However, there are no studies regarding the influence of all these three mechanisms on the latest high-performance Artificial Intelligence techniques, such as Deep Learning. The goal of this work is to perform a comparison study between state-of-the-art imputation techniques and a Stacked Denoising Autoencoders approach. To that end, the missing data mechanisms were synthetically generated in 6 different ways; 8 different imputation techniques were implemented; and finally, 33 complete datasets from different open source repositories were selected. The obtained results showed that Support Vector Machines imputation ensures the best classification performance while Multiple Imputation by Chained Equations performs better in terms of imputation quality." @default.
- W2894914645 created "2018-10-12" @default.
- W2894914645 creator A5017034254 @default.
- W2894914645 creator A5038577808 @default.
- W2894914645 creator A5051720720 @default.
- W2894914645 creator A5065859612 @default.
- W2894914645 date "2018-01-01" @default.
- W2894914645 modified "2023-10-18" @default.
- W2894914645 title "Missing Data Imputation via Denoising Autoencoders: The Untold Story" @default.
- W2894914645 cites W1919216911 @default.
- W2894914645 cites W1988904801 @default.
- W2894914645 cites W2002959912 @default.
- W2894914645 cites W2025768430 @default.
- W2894914645 cites W2071767222 @default.
- W2894914645 cites W2115969689 @default.
- W2894914645 cites W2125437673 @default.
- W2894914645 cites W2146332392 @default.
- W2894914645 cites W2188870910 @default.
- W2894914645 cites W2529827714 @default.
- W2894914645 cites W2530103281 @default.
- W2894914645 cites W2604928999 @default.
- W2894914645 cites W2618813671 @default.
- W2894914645 cites W2619474868 @default.
- W2894914645 cites W2735864302 @default.
- W2894914645 cites W2765728227 @default.
- W2894914645 cites W2783189612 @default.
- W2894914645 cites W2788592841 @default.
- W2894914645 cites W3102094077 @default.
- W2894914645 doi "https://doi.org/10.1007/978-3-030-01768-2_8" @default.
- W2894914645 hasPublicationYear "2018" @default.
- W2894914645 type Work @default.
- W2894914645 sameAs 2894914645 @default.
- W2894914645 citedByCount "20" @default.
- W2894914645 countsByYear W28949146452019 @default.
- W2894914645 countsByYear W28949146452020 @default.
- W2894914645 countsByYear W28949146452021 @default.
- W2894914645 countsByYear W28949146452022 @default.
- W2894914645 countsByYear W28949146452023 @default.
- W2894914645 crossrefType "book-chapter" @default.
- W2894914645 hasAuthorship W2894914645A5017034254 @default.
- W2894914645 hasAuthorship W2894914645A5038577808 @default.
- W2894914645 hasAuthorship W2894914645A5051720720 @default.
- W2894914645 hasAuthorship W2894914645A5065859612 @default.
- W2894914645 hasConcept C119857082 @default.
- W2894914645 hasConcept C124101348 @default.
- W2894914645 hasConcept C153180895 @default.
- W2894914645 hasConcept C154945302 @default.
- W2894914645 hasConcept C163294075 @default.
- W2894914645 hasConcept C41008148 @default.
- W2894914645 hasConcept C58041806 @default.
- W2894914645 hasConcept C9357733 @default.
- W2894914645 hasConceptScore W2894914645C119857082 @default.
- W2894914645 hasConceptScore W2894914645C124101348 @default.
- W2894914645 hasConceptScore W2894914645C153180895 @default.
- W2894914645 hasConceptScore W2894914645C154945302 @default.
- W2894914645 hasConceptScore W2894914645C163294075 @default.
- W2894914645 hasConceptScore W2894914645C41008148 @default.
- W2894914645 hasConceptScore W2894914645C58041806 @default.
- W2894914645 hasConceptScore W2894914645C9357733 @default.
- W2894914645 hasLocation W28949146451 @default.
- W2894914645 hasOpenAccess W2894914645 @default.
- W2894914645 hasPrimaryLocation W28949146451 @default.
- W2894914645 hasRelatedWork W1513289763 @default.
- W2894914645 hasRelatedWork W1973721774 @default.
- W2894914645 hasRelatedWork W2316243772 @default.
- W2894914645 hasRelatedWork W2541565311 @default.
- W2894914645 hasRelatedWork W2751555317 @default.
- W2894914645 hasRelatedWork W2784019465 @default.
- W2894914645 hasRelatedWork W2900766238 @default.
- W2894914645 hasRelatedWork W3049453136 @default.
- W2894914645 hasRelatedWork W569810835 @default.
- W2894914645 hasRelatedWork W2112497756 @default.
- W2894914645 isParatext "false" @default.
- W2894914645 isRetracted "false" @default.
- W2894914645 magId "2894914645" @default.
- W2894914645 workType "book-chapter" @default.