Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894924324> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2894924324 endingPage "57323" @default.
- W2894924324 startingPage "57311" @default.
- W2894924324 abstract "By collecting and analyzing a vast quantity and different categories of information, traffic flow and road congestion can be predicted and avoided in intelligent transportation system. However, how to tackle with these big data is vital but challenging. Most of the existing literatures utilized batch method to process a bunch of road data that cannot achieve real-time traffic prediction. In this paper, we use the spouts and bolts in Apache Storm to implement a real-time traffic prediction model by analyzing enormous streaming data, such as road density, traffic events, and rainfall volume. The proposed SVM-based real-time highway traffic congestion prediction (SRHTCP) model collects the road data from the Taiwan Area National Freeway Bureau, the traffic events reported by road users from the Police Broadcasting Service in Taiwan, and the weather data from the Central Weather Bureau in Taiwan. We use fuzzy theory to evaluate the traffic level of road section in real time with considering road speed, road density, road traffic volume, and the rainfall of road sections. In addition, the SRHTCP model predicts the road speed of next time period by exploring streaming traffic and weather data. Results showed that the proposed SRHTCP model improves 25.6% prediction accuracy than the prediction method based on weighted exponential moving average method under the measurement of mean absolute relative error." @default.
- W2894924324 created "2018-10-12" @default.
- W2894924324 creator A5000917818 @default.
- W2894924324 creator A5018960275 @default.
- W2894924324 creator A5025138440 @default.
- W2894924324 creator A5074765626 @default.
- W2894924324 creator A5085387617 @default.
- W2894924324 creator A5088120039 @default.
- W2894924324 date "2018-01-01" @default.
- W2894924324 modified "2023-10-17" @default.
- W2894924324 title "Congestion Prediction With Big Data for Real-Time Highway Traffic" @default.
- W2894924324 cites W1918839972 @default.
- W2894924324 cites W1970948417 @default.
- W2894924324 cites W1975138410 @default.
- W2894924324 cites W1991968851 @default.
- W2894924324 cites W2009442627 @default.
- W2894924324 cites W2022858618 @default.
- W2894924324 cites W2048430936 @default.
- W2894924324 cites W2055637560 @default.
- W2894924324 cites W2058714558 @default.
- W2894924324 cites W2087347434 @default.
- W2894924324 cites W2102148524 @default.
- W2894924324 cites W2122369856 @default.
- W2894924324 cites W2123931151 @default.
- W2894924324 cites W24222381 @default.
- W2894924324 cites W2545264114 @default.
- W2894924324 cites W2614556125 @default.
- W2894924324 cites W2767118735 @default.
- W2894924324 cites W4211007335 @default.
- W2894924324 doi "https://doi.org/10.1109/access.2018.2873569" @default.
- W2894924324 hasPublicationYear "2018" @default.
- W2894924324 type Work @default.
- W2894924324 sameAs 2894924324 @default.
- W2894924324 citedByCount "47" @default.
- W2894924324 countsByYear W28949243242019 @default.
- W2894924324 countsByYear W28949243242020 @default.
- W2894924324 countsByYear W28949243242021 @default.
- W2894924324 countsByYear W28949243242022 @default.
- W2894924324 countsByYear W28949243242023 @default.
- W2894924324 crossrefType "journal-article" @default.
- W2894924324 hasAuthorship W2894924324A5000917818 @default.
- W2894924324 hasAuthorship W2894924324A5018960275 @default.
- W2894924324 hasAuthorship W2894924324A5025138440 @default.
- W2894924324 hasAuthorship W2894924324A5074765626 @default.
- W2894924324 hasAuthorship W2894924324A5085387617 @default.
- W2894924324 hasAuthorship W2894924324A5088120039 @default.
- W2894924324 hasBestOaLocation W28949243241 @default.
- W2894924324 hasConcept C124101348 @default.
- W2894924324 hasConcept C127413603 @default.
- W2894924324 hasConcept C22212356 @default.
- W2894924324 hasConcept C25492975 @default.
- W2894924324 hasConcept C2779888511 @default.
- W2894924324 hasConcept C41008148 @default.
- W2894924324 hasConcept C75684735 @default.
- W2894924324 hasConcept C79403827 @default.
- W2894924324 hasConceptScore W2894924324C124101348 @default.
- W2894924324 hasConceptScore W2894924324C127413603 @default.
- W2894924324 hasConceptScore W2894924324C22212356 @default.
- W2894924324 hasConceptScore W2894924324C25492975 @default.
- W2894924324 hasConceptScore W2894924324C2779888511 @default.
- W2894924324 hasConceptScore W2894924324C41008148 @default.
- W2894924324 hasConceptScore W2894924324C75684735 @default.
- W2894924324 hasConceptScore W2894924324C79403827 @default.
- W2894924324 hasFunder F4320322795 @default.
- W2894924324 hasLocation W28949243241 @default.
- W2894924324 hasOpenAccess W2894924324 @default.
- W2894924324 hasPrimaryLocation W28949243241 @default.
- W2894924324 hasRelatedWork W1976928326 @default.
- W2894924324 hasRelatedWork W217043505 @default.
- W2894924324 hasRelatedWork W2329298371 @default.
- W2894924324 hasRelatedWork W2349209873 @default.
- W2894924324 hasRelatedWork W2359285227 @default.
- W2894924324 hasRelatedWork W2370594732 @default.
- W2894924324 hasRelatedWork W2540942508 @default.
- W2894924324 hasRelatedWork W2998336146 @default.
- W2894924324 hasRelatedWork W4285099089 @default.
- W2894924324 hasRelatedWork W764141498 @default.
- W2894924324 hasVolume "6" @default.
- W2894924324 isParatext "false" @default.
- W2894924324 isRetracted "false" @default.
- W2894924324 magId "2894924324" @default.
- W2894924324 workType "article" @default.