Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894934545> ?p ?o ?g. }
- W2894934545 endingPage "471" @default.
- W2894934545 startingPage "464" @default.
- W2894934545 abstract "With the development of science and biotechnology, many evidences show that ncRNAs play an important role in the development of important biological processes, especially in chromatin modification, cell differentiation and proliferation, RNA progressing, human diseases, etc. Moreover, lncRNAs account for the majority of ncRNAs, and the functions of lncRNAs are expressed by the related RNA-binding proteins. It is well known that the experimental verification of lncRNA-protein relationships is a waste of time and expensive. So many time-saving and inexpensive computational methods are proposed to uncover potential lncRNA-protein interactions. In this work, we propose a novel computational method to predict the potential lncRNA-protein interactions with the bipartite network projection recommended algorithm (LPI-BNPRA). Our approach is a semi-supervised method based on the lncRNA similarity matrix, protein similarity matrix, and lncRNA-protein interaction matrix. Compared with three previous methods under the leave-one-out cross-validation, our model has a more high-confidence result with the AUC value of 0.8754 and the AUPR value of 0.6283. We also do case studies by the Mus musculus dataset to further reflect the reliability of our approach. This suggests that LPI-BNPRA will be a reliable computational method to uncover lncRNA-protein interactions in biomedical research. With the development of science and biotechnology, many evidences show that ncRNAs play an important role in the development of important biological processes, especially in chromatin modification, cell differentiation and proliferation, RNA progressing, human diseases, etc. Moreover, lncRNAs account for the majority of ncRNAs, and the functions of lncRNAs are expressed by the related RNA-binding proteins. It is well known that the experimental verification of lncRNA-protein relationships is a waste of time and expensive. So many time-saving and inexpensive computational methods are proposed to uncover potential lncRNA-protein interactions. In this work, we propose a novel computational method to predict the potential lncRNA-protein interactions with the bipartite network projection recommended algorithm (LPI-BNPRA). Our approach is a semi-supervised method based on the lncRNA similarity matrix, protein similarity matrix, and lncRNA-protein interaction matrix. Compared with three previous methods under the leave-one-out cross-validation, our model has a more high-confidence result with the AUC value of 0.8754 and the AUPR value of 0.6283. We also do case studies by the Mus musculus dataset to further reflect the reliability of our approach. This suggests that LPI-BNPRA will be a reliable computational method to uncover lncRNA-protein interactions in biomedical research." @default.
- W2894934545 created "2018-10-12" @default.
- W2894934545 creator A5013881064 @default.
- W2894934545 creator A5015273050 @default.
- W2894934545 creator A5016207332 @default.
- W2894934545 creator A5017054985 @default.
- W2894934545 creator A5052565646 @default.
- W2894934545 creator A5086714709 @default.
- W2894934545 date "2018-12-01" @default.
- W2894934545 modified "2023-10-15" @default.
- W2894934545 title "The Bipartite Network Projection-Recommended Algorithm for Predicting Long Non-coding RNA-Protein Interactions" @default.
- W2894934545 cites W1731645091 @default.
- W2894934545 cites W1978967539 @default.
- W2894934545 cites W1999746344 @default.
- W2894934545 cites W2008056655 @default.
- W2894934545 cites W2016066165 @default.
- W2894934545 cites W2025150647 @default.
- W2894934545 cites W2037423297 @default.
- W2894934545 cites W2039816251 @default.
- W2894934545 cites W2045290850 @default.
- W2894934545 cites W2052938279 @default.
- W2894934545 cites W2072394638 @default.
- W2894934545 cites W2072506120 @default.
- W2894934545 cites W2089652064 @default.
- W2894934545 cites W2094523102 @default.
- W2894934545 cites W2097702406 @default.
- W2894934545 cites W2103683291 @default.
- W2894934545 cites W2105694586 @default.
- W2894934545 cites W2119501676 @default.
- W2894934545 cites W2131773109 @default.
- W2894934545 cites W2141014056 @default.
- W2894934545 cites W2146520012 @default.
- W2894934545 cites W2148542126 @default.
- W2894934545 cites W2150098952 @default.
- W2894934545 cites W2152970345 @default.
- W2894934545 cites W2165188181 @default.
- W2894934545 cites W2169777381 @default.
- W2894934545 cites W2256799280 @default.
- W2894934545 cites W2259538443 @default.
- W2894934545 cites W2313637336 @default.
- W2894934545 cites W2336850185 @default.
- W2894934545 cites W2341336811 @default.
- W2894934545 cites W2344144945 @default.
- W2894934545 cites W2344521356 @default.
- W2894934545 cites W2415034478 @default.
- W2894934545 cites W2415774299 @default.
- W2894934545 cites W2473876819 @default.
- W2894934545 cites W2567465856 @default.
- W2894934545 cites W2570408261 @default.
- W2894934545 cites W2601934706 @default.
- W2894934545 cites W2612060048 @default.
- W2894934545 cites W2673729825 @default.
- W2894934545 cites W2739999456 @default.
- W2894934545 cites W2752850911 @default.
- W2894934545 cites W2766398869 @default.
- W2894934545 cites W2766897790 @default.
- W2894934545 cites W2780777007 @default.
- W2894934545 cites W2781702232 @default.
- W2894934545 cites W2799307902 @default.
- W2894934545 cites W2913898479 @default.
- W2894934545 cites W3101634756 @default.
- W2894934545 cites W363319864 @default.
- W2894934545 cites W4379509748 @default.
- W2894934545 cites W644786505 @default.
- W2894934545 doi "https://doi.org/10.1016/j.omtn.2018.09.020" @default.
- W2894934545 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6205413" @default.
- W2894934545 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30388620" @default.
- W2894934545 hasPublicationYear "2018" @default.
- W2894934545 type Work @default.
- W2894934545 sameAs 2894934545 @default.
- W2894934545 citedByCount "61" @default.
- W2894934545 countsByYear W28949345452019 @default.
- W2894934545 countsByYear W28949345452020 @default.
- W2894934545 countsByYear W28949345452021 @default.
- W2894934545 countsByYear W28949345452022 @default.
- W2894934545 countsByYear W28949345452023 @default.
- W2894934545 crossrefType "journal-article" @default.
- W2894934545 hasAuthorship W2894934545A5013881064 @default.
- W2894934545 hasAuthorship W2894934545A5015273050 @default.
- W2894934545 hasAuthorship W2894934545A5016207332 @default.
- W2894934545 hasAuthorship W2894934545A5017054985 @default.
- W2894934545 hasAuthorship W2894934545A5052565646 @default.
- W2894934545 hasAuthorship W2894934545A5086714709 @default.
- W2894934545 hasBestOaLocation W28949345451 @default.
- W2894934545 hasConcept C103278499 @default.
- W2894934545 hasConcept C104317684 @default.
- W2894934545 hasConcept C105795698 @default.
- W2894934545 hasConcept C11413529 @default.
- W2894934545 hasConcept C115961682 @default.
- W2894934545 hasConcept C132525143 @default.
- W2894934545 hasConcept C154945302 @default.
- W2894934545 hasConcept C179518139 @default.
- W2894934545 hasConcept C197657726 @default.
- W2894934545 hasConcept C33923547 @default.
- W2894934545 hasConcept C41008148 @default.
- W2894934545 hasConcept C54355233 @default.
- W2894934545 hasConcept C552990157 @default.
- W2894934545 hasConcept C57493831 @default.