Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894947093> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2894947093 endingPage "379" @default.
- W2894947093 startingPage "369" @default.
- W2894947093 abstract "Abstract Anomaly detection is one of the fundamental problems within diverse research areas and application domains. In comparison with most sparse representation based anomaly detection methods adopting a relaxation term of sparsity via l1 norm, we propose an unsupervised anomaly detection method optimized via an adaptive greedy model based on l0 norm constraint, which is more accurate, robust and sparse in theory. Firstly for feature representation, a concise feature space is learned in an unsupervised way via stacked autoencoder network. We propose a dictionary selection model based on l2, 0 norm constraint to select an optimal small subset of the training data to construct a condense dictionary, which can improve accuracy and reduce computational burden simultaneously. Finally, each testing sample is reconstructed by l0 norm constraint based sparse representation, and anomalies are determined depending on the sparse reconstruction scores accordingly. For model optimization, an adaptive forward-backward greedy model is utilized to optimize this nonconvex problem with the theoretical guarantee. Our proposed method is evaluated with our real industrial dataset and benchmark datasets, and various experimental results demonstrate that our proposed method is comparable with conventional supervised methods and performs better than most comparative unsupervised methods." @default.
- W2894947093 created "2018-10-12" @default.
- W2894947093 creator A5006477225 @default.
- W2894947093 creator A5031333887 @default.
- W2894947093 creator A5049225160 @default.
- W2894947093 creator A5060691225 @default.
- W2894947093 creator A5086347026 @default.
- W2894947093 date "2019-02-01" @default.
- W2894947093 modified "2023-10-12" @default.
- W2894947093 title "Anomaly detection via adaptive greedy model" @default.
- W2894947093 cites W1967456674 @default.
- W2894947093 cites W1986668511 @default.
- W2894947093 cites W1998691552 @default.
- W2894947093 cites W2003873956 @default.
- W2894947093 cites W2016258134 @default.
- W2894947093 cites W2022282473 @default.
- W2894947093 cites W2025946330 @default.
- W2894947093 cites W2036109700 @default.
- W2894947093 cites W2036584242 @default.
- W2894947093 cites W2068678179 @default.
- W2894947093 cites W2072412055 @default.
- W2894947093 cites W2074076772 @default.
- W2894947093 cites W2074682976 @default.
- W2894947093 cites W2087044413 @default.
- W2894947093 cites W2113393671 @default.
- W2894947093 cites W2123256336 @default.
- W2894947093 cites W2129812935 @default.
- W2894947093 cites W2137130182 @default.
- W2894947093 cites W2144182447 @default.
- W2894947093 cites W2162708633 @default.
- W2894947093 cites W2167152259 @default.
- W2894947093 cites W2215515522 @default.
- W2894947093 cites W2288636546 @default.
- W2894947093 cites W2343117455 @default.
- W2894947093 doi "https://doi.org/10.1016/j.neucom.2018.09.080" @default.
- W2894947093 hasPublicationYear "2019" @default.
- W2894947093 type Work @default.
- W2894947093 sameAs 2894947093 @default.
- W2894947093 citedByCount "9" @default.
- W2894947093 countsByYear W28949470932020 @default.
- W2894947093 countsByYear W28949470932021 @default.
- W2894947093 countsByYear W28949470932022 @default.
- W2894947093 crossrefType "journal-article" @default.
- W2894947093 hasAuthorship W2894947093A5006477225 @default.
- W2894947093 hasAuthorship W2894947093A5031333887 @default.
- W2894947093 hasAuthorship W2894947093A5049225160 @default.
- W2894947093 hasAuthorship W2894947093A5060691225 @default.
- W2894947093 hasAuthorship W2894947093A5086347026 @default.
- W2894947093 hasConcept C11413529 @default.
- W2894947093 hasConcept C121332964 @default.
- W2894947093 hasConcept C12997251 @default.
- W2894947093 hasConcept C154945302 @default.
- W2894947093 hasConcept C26873012 @default.
- W2894947093 hasConcept C41008148 @default.
- W2894947093 hasConcept C51823790 @default.
- W2894947093 hasConcept C739882 @default.
- W2894947093 hasConceptScore W2894947093C11413529 @default.
- W2894947093 hasConceptScore W2894947093C121332964 @default.
- W2894947093 hasConceptScore W2894947093C12997251 @default.
- W2894947093 hasConceptScore W2894947093C154945302 @default.
- W2894947093 hasConceptScore W2894947093C26873012 @default.
- W2894947093 hasConceptScore W2894947093C41008148 @default.
- W2894947093 hasConceptScore W2894947093C51823790 @default.
- W2894947093 hasConceptScore W2894947093C739882 @default.
- W2894947093 hasFunder F4320321001 @default.
- W2894947093 hasLocation W28949470931 @default.
- W2894947093 hasOpenAccess W2894947093 @default.
- W2894947093 hasPrimaryLocation W28949470931 @default.
- W2894947093 hasRelatedWork W1973132006 @default.
- W2894947093 hasRelatedWork W2143820878 @default.
- W2894947093 hasRelatedWork W2352396352 @default.
- W2894947093 hasRelatedWork W2806741695 @default.
- W2894947093 hasRelatedWork W2963338867 @default.
- W2894947093 hasRelatedWork W3189286258 @default.
- W2894947093 hasRelatedWork W3207797160 @default.
- W2894947093 hasRelatedWork W3210364259 @default.
- W2894947093 hasRelatedWork W4285195761 @default.
- W2894947093 hasRelatedWork W4290647774 @default.
- W2894947093 hasVolume "330" @default.
- W2894947093 isParatext "false" @default.
- W2894947093 isRetracted "false" @default.
- W2894947093 magId "2894947093" @default.
- W2894947093 workType "article" @default.