Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894947275> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2894947275 abstract "Recent studies have revealed the adverse effect of benzene as an air pollutant. Benzene has been proved to be causing several health hazards in unbar areas. Researchers have employed machine learning methods to predict the available benzene concentration in a particular area. Motivated by the recent advancements in the field of machine learning, the authors have proposed a deep learning-based model to predict benzene quantity in order to determine the quality of air as well. Benzene quantity prediction in the atmosphere has been accomplished with respect to certain specified elements (like carbon monoxide, PT08.S1, PT08.S2) that coexist along with benzene (C6H6). A feature selection stage has been employed using correlation analysis to find the most suitable set of features. Six features have been selected for the experimental purpose. Further, the proposed model has been compared with well-known machine learning models such as linear regression, polynomial regression, K-nearest neighbor, multilayer perceptron feedforward network (MLP-FFN) in terms of RMSE. Experimental results have suggested that the proposed deep learning-based model is superior to the other models under current study." @default.
- W2894947275 created "2018-10-12" @default.
- W2894947275 creator A5016123291 @default.
- W2894947275 creator A5021030617 @default.
- W2894947275 creator A5029309294 @default.
- W2894947275 creator A5064092641 @default.
- W2894947275 creator A5074275307 @default.
- W2894947275 creator A5089022822 @default.
- W2894947275 date "2018-10-05" @default.
- W2894947275 modified "2023-09-24" @default.
- W2894947275 title "Prediction of Benzene Concentration of Air in Urban Area Using Deep Neural Network" @default.
- W2894947275 cites W1519238132 @default.
- W2894947275 cites W1931006721 @default.
- W2894947275 cites W2138491179 @default.
- W2894947275 cites W2292633882 @default.
- W2894947275 cites W2421923334 @default.
- W2894947275 cites W2756467951 @default.
- W2894947275 cites W2765706790 @default.
- W2894947275 cites W2765779161 @default.
- W2894947275 cites W2765877491 @default.
- W2894947275 cites W2775602825 @default.
- W2894947275 cites W2783038087 @default.
- W2894947275 cites W2783365325 @default.
- W2894947275 cites W2785860902 @default.
- W2894947275 cites W2787398400 @default.
- W2894947275 cites W2789384886 @default.
- W2894947275 cites W2794934621 @default.
- W2894947275 cites W4241855287 @default.
- W2894947275 doi "https://doi.org/10.1007/978-981-13-1544-2_38" @default.
- W2894947275 hasPublicationYear "2018" @default.
- W2894947275 type Work @default.
- W2894947275 sameAs 2894947275 @default.
- W2894947275 citedByCount "1" @default.
- W2894947275 countsByYear W28949472752021 @default.
- W2894947275 crossrefType "book-chapter" @default.
- W2894947275 hasAuthorship W2894947275A5016123291 @default.
- W2894947275 hasAuthorship W2894947275A5021030617 @default.
- W2894947275 hasAuthorship W2894947275A5029309294 @default.
- W2894947275 hasAuthorship W2894947275A5064092641 @default.
- W2894947275 hasAuthorship W2894947275A5074275307 @default.
- W2894947275 hasAuthorship W2894947275A5089022822 @default.
- W2894947275 hasConcept C108583219 @default.
- W2894947275 hasConcept C119857082 @default.
- W2894947275 hasConcept C126314574 @default.
- W2894947275 hasConcept C153294291 @default.
- W2894947275 hasConcept C154945302 @default.
- W2894947275 hasConcept C178790620 @default.
- W2894947275 hasConcept C179717631 @default.
- W2894947275 hasConcept C185592680 @default.
- W2894947275 hasConcept C205649164 @default.
- W2894947275 hasConcept C2777691172 @default.
- W2894947275 hasConcept C39432304 @default.
- W2894947275 hasConcept C41008148 @default.
- W2894947275 hasConcept C50644808 @default.
- W2894947275 hasConceptScore W2894947275C108583219 @default.
- W2894947275 hasConceptScore W2894947275C119857082 @default.
- W2894947275 hasConceptScore W2894947275C126314574 @default.
- W2894947275 hasConceptScore W2894947275C153294291 @default.
- W2894947275 hasConceptScore W2894947275C154945302 @default.
- W2894947275 hasConceptScore W2894947275C178790620 @default.
- W2894947275 hasConceptScore W2894947275C179717631 @default.
- W2894947275 hasConceptScore W2894947275C185592680 @default.
- W2894947275 hasConceptScore W2894947275C205649164 @default.
- W2894947275 hasConceptScore W2894947275C2777691172 @default.
- W2894947275 hasConceptScore W2894947275C39432304 @default.
- W2894947275 hasConceptScore W2894947275C41008148 @default.
- W2894947275 hasConceptScore W2894947275C50644808 @default.
- W2894947275 hasLocation W28949472751 @default.
- W2894947275 hasOpenAccess W2894947275 @default.
- W2894947275 hasPrimaryLocation W28949472751 @default.
- W2894947275 hasRelatedWork W2084779923 @default.
- W2894947275 hasRelatedWork W2140225375 @default.
- W2894947275 hasRelatedWork W2787191226 @default.
- W2894947275 hasRelatedWork W2992775743 @default.
- W2894947275 hasRelatedWork W3028499805 @default.
- W2894947275 hasRelatedWork W3208420502 @default.
- W2894947275 hasRelatedWork W3212578714 @default.
- W2894947275 hasRelatedWork W4231994957 @default.
- W2894947275 hasRelatedWork W4280611221 @default.
- W2894947275 hasRelatedWork W1629725936 @default.
- W2894947275 isParatext "false" @default.
- W2894947275 isRetracted "false" @default.
- W2894947275 magId "2894947275" @default.
- W2894947275 workType "book-chapter" @default.