Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894958639> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2894958639 abstract "We present an approach based on machine learning (ML) to distinguish eruption and precursory signals of Chimay'{o} geyser (New Mexico, USA) under noisy environments. This geyser can be considered as a natural analog of $mathrm{CO}_2$ intrusion into shallow water aquifers. By studying this geyser, we can understand upwelling of $mathrm{CO}_2$-rich fluids from depth, which has relevance to leak monitoring in a $mathrm{CO}_2$ sequestration project. ML methods such as Random Forests (RF) are known to be robust multi-class classifiers and perform well under unfavorable noisy conditions. However, the extent of the RF method's accuracy is poorly understood for this $mathrm{CO}_2$-driven geysering application. The current study aims to quantify the performance of RF-classifiers to discern the geyser state. Towards this goal, we first present the data collected from the seismometer that is installed near the Chimay'{o} geyser. The seismic signals collected at this site contain different types of noises such as daily temperature variations, seasonal trends, animal movement near the geyser, and human activity. First, we filter the signals from these noises by combining the Butterworth-Highpass filter and an Autoregressive method in a multi-level fashion. We show that by combining these filtering techniques, in a hierarchical fashion, leads to reduction in the noise in the seismic data without removing the precursors and eruption event signals. We then use RF on the filtered data to classify the state of geyser into three classes -- remnant noise, precursor, and eruption states. We show that the classification accuracy using RF on the filtered data is greater than 90%.These aspects make the proposed ML framework attractive for event discrimination and signal enhancement under noisy conditions, with strong potential for application to monitoring leaks in $mathrm{CO}_2$ sequestration." @default.
- W2894958639 created "2018-10-12" @default.
- W2894958639 creator A5011283507 @default.
- W2894958639 creator A5013950520 @default.
- W2894958639 creator A5025218521 @default.
- W2894958639 creator A5025260218 @default.
- W2894958639 creator A5029791109 @default.
- W2894958639 creator A5041332531 @default.
- W2894958639 creator A5043046558 @default.
- W2894958639 creator A5048995526 @default.
- W2894958639 creator A5057203136 @default.
- W2894958639 creator A5060765277 @default.
- W2894958639 creator A5071197915 @default.
- W2894958639 date "2018-10-01" @default.
- W2894958639 modified "2023-09-26" @default.
- W2894958639 title "Using Machine Learning to Discern Eruption in Noisy Environments: A Case Study using CO2-driven Cold-Water Geyser in Chimayo, New Mexico" @default.
- W2894958639 cites W2181523240 @default.
- W2894958639 cites W2182353144 @default.
- W2894958639 cites W2252268321 @default.
- W2894958639 cites W2522003338 @default.
- W2894958639 cites W659538369 @default.
- W2894958639 cites W785950572 @default.
- W2894958639 doi "https://doi.org/10.48550/arxiv.1810.01488" @default.
- W2894958639 hasPublicationYear "2018" @default.
- W2894958639 type Work @default.
- W2894958639 sameAs 2894958639 @default.
- W2894958639 citedByCount "0" @default.
- W2894958639 crossrefType "posted-content" @default.
- W2894958639 hasAuthorship W2894958639A5011283507 @default.
- W2894958639 hasAuthorship W2894958639A5013950520 @default.
- W2894958639 hasAuthorship W2894958639A5025218521 @default.
- W2894958639 hasAuthorship W2894958639A5025260218 @default.
- W2894958639 hasAuthorship W2894958639A5029791109 @default.
- W2894958639 hasAuthorship W2894958639A5041332531 @default.
- W2894958639 hasAuthorship W2894958639A5043046558 @default.
- W2894958639 hasAuthorship W2894958639A5048995526 @default.
- W2894958639 hasAuthorship W2894958639A5057203136 @default.
- W2894958639 hasAuthorship W2894958639A5060765277 @default.
- W2894958639 hasAuthorship W2894958639A5071197915 @default.
- W2894958639 hasBestOaLocation W28949586391 @default.
- W2894958639 hasConcept C106131492 @default.
- W2894958639 hasConcept C115961682 @default.
- W2894958639 hasConcept C119217923 @default.
- W2894958639 hasConcept C121332964 @default.
- W2894958639 hasConcept C127313418 @default.
- W2894958639 hasConcept C154945302 @default.
- W2894958639 hasConcept C158154518 @default.
- W2894958639 hasConcept C158251709 @default.
- W2894958639 hasConcept C165205528 @default.
- W2894958639 hasConcept C169258074 @default.
- W2894958639 hasConcept C17409809 @default.
- W2894958639 hasConcept C17744445 @default.
- W2894958639 hasConcept C199539241 @default.
- W2894958639 hasConcept C2779662365 @default.
- W2894958639 hasConcept C31972630 @default.
- W2894958639 hasConcept C41008148 @default.
- W2894958639 hasConcept C62520636 @default.
- W2894958639 hasConcept C79403827 @default.
- W2894958639 hasConcept C99498987 @default.
- W2894958639 hasConceptScore W2894958639C106131492 @default.
- W2894958639 hasConceptScore W2894958639C115961682 @default.
- W2894958639 hasConceptScore W2894958639C119217923 @default.
- W2894958639 hasConceptScore W2894958639C121332964 @default.
- W2894958639 hasConceptScore W2894958639C127313418 @default.
- W2894958639 hasConceptScore W2894958639C154945302 @default.
- W2894958639 hasConceptScore W2894958639C158154518 @default.
- W2894958639 hasConceptScore W2894958639C158251709 @default.
- W2894958639 hasConceptScore W2894958639C165205528 @default.
- W2894958639 hasConceptScore W2894958639C169258074 @default.
- W2894958639 hasConceptScore W2894958639C17409809 @default.
- W2894958639 hasConceptScore W2894958639C17744445 @default.
- W2894958639 hasConceptScore W2894958639C199539241 @default.
- W2894958639 hasConceptScore W2894958639C2779662365 @default.
- W2894958639 hasConceptScore W2894958639C31972630 @default.
- W2894958639 hasConceptScore W2894958639C41008148 @default.
- W2894958639 hasConceptScore W2894958639C62520636 @default.
- W2894958639 hasConceptScore W2894958639C79403827 @default.
- W2894958639 hasConceptScore W2894958639C99498987 @default.
- W2894958639 hasLocation W28949586391 @default.
- W2894958639 hasLocation W28949586392 @default.
- W2894958639 hasOpenAccess W2894958639 @default.
- W2894958639 hasPrimaryLocation W28949586391 @default.
- W2894958639 hasRelatedWork W1600991777 @default.
- W2894958639 hasRelatedWork W1605766382 @default.
- W2894958639 hasRelatedWork W1979427886 @default.
- W2894958639 hasRelatedWork W2030238662 @default.
- W2894958639 hasRelatedWork W2031573214 @default.
- W2894958639 hasRelatedWork W2033280630 @default.
- W2894958639 hasRelatedWork W2087443533 @default.
- W2894958639 hasRelatedWork W2768268417 @default.
- W2894958639 hasRelatedWork W4253374395 @default.
- W2894958639 hasRelatedWork W4294734196 @default.
- W2894958639 isParatext "false" @default.
- W2894958639 isRetracted "false" @default.
- W2894958639 magId "2894958639" @default.
- W2894958639 workType "article" @default.