Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894958918> ?p ?o ?g. }
- W2894958918 endingPage "668" @default.
- W2894958918 startingPage "659" @default.
- W2894958918 abstract "With the emergence of high-throughput technologies, it is possible to measure large amounts of data relatively at low cost. Such situations arise in many fields from sciences to humanities, and variable selection may be of great help to answer challenges that are specific to each of them. Variable selection may allow to know, among all measured variables, which are of interest and which are not. A lot of methods have been proposed to handle this issue, with the Lasso and other penalized regression as special cases. These methods fail in some cases and linear correlation between explanatory variables is the most common of these, especially in big datasets. In this article, we introduce AcSel, a wrapping algorithm able to enhance the accuracy of any variable selection method. To achieve this result, we use intensive computational simulations." @default.
- W2894958918 created "2018-10-12" @default.
- W2894958918 creator A5007708854 @default.
- W2894958918 creator A5014276139 @default.
- W2894958918 creator A5018958239 @default.
- W2894958918 creator A5033887412 @default.
- W2894958918 creator A5035105762 @default.
- W2894958918 creator A5068528684 @default.
- W2894958918 creator A5078907320 @default.
- W2894958918 date "2020-10-05" @default.
- W2894958918 modified "2023-09-25" @default.
- W2894958918 title "selectBoost: a general algorithm to enhance the performance of variable selection methods" @default.
- W2894958918 cites W1483883706 @default.
- W2894958918 cites W1517893728 @default.
- W2894958918 cites W1532319248 @default.
- W2894958918 cites W1965125844 @default.
- W2894958918 cites W1995674377 @default.
- W2894958918 cites W2000585061 @default.
- W2894958918 cites W2004147962 @default.
- W2894958918 cites W2019176983 @default.
- W2894958918 cites W2020925091 @default.
- W2894958918 cites W2028781966 @default.
- W2894958918 cites W2029441111 @default.
- W2894958918 cites W2047940964 @default.
- W2894958918 cites W2058358568 @default.
- W2894958918 cites W2061250208 @default.
- W2894958918 cites W2063978378 @default.
- W2894958918 cites W2071063499 @default.
- W2894958918 cites W2078204800 @default.
- W2894958918 cites W2094231493 @default.
- W2894958918 cites W2097360283 @default.
- W2894958918 cites W2109363337 @default.
- W2894958918 cites W2122825543 @default.
- W2894958918 cites W2133871893 @default.
- W2894958918 cites W2138019504 @default.
- W2894958918 cites W2142635246 @default.
- W2894958918 cites W2143689381 @default.
- W2894958918 cites W2146512944 @default.
- W2894958918 cites W2152644043 @default.
- W2894958918 cites W2154332973 @default.
- W2894958918 cites W2156787958 @default.
- W2894958918 cites W2157875785 @default.
- W2894958918 cites W2162942021 @default.
- W2894958918 cites W2168175751 @default.
- W2894958918 cites W2169103656 @default.
- W2894958918 cites W2170917242 @default.
- W2894958918 cites W2272422834 @default.
- W2894958918 cites W2299181842 @default.
- W2894958918 cites W2317866228 @default.
- W2894958918 cites W2562162676 @default.
- W2894958918 cites W2962931338 @default.
- W2894958918 cites W3037000643 @default.
- W2894958918 cites W3099090856 @default.
- W2894958918 cites W4234698323 @default.
- W2894958918 cites W4294541781 @default.
- W2894958918 cites W2893264376 @default.
- W2894958918 doi "https://doi.org/10.1093/bioinformatics/btaa855" @default.
- W2894958918 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8097688" @default.
- W2894958918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33016991" @default.
- W2894958918 hasPublicationYear "2020" @default.
- W2894958918 type Work @default.
- W2894958918 sameAs 2894958918 @default.
- W2894958918 citedByCount "1" @default.
- W2894958918 countsByYear W28949589182021 @default.
- W2894958918 crossrefType "journal-article" @default.
- W2894958918 hasAuthorship W2894958918A5007708854 @default.
- W2894958918 hasAuthorship W2894958918A5014276139 @default.
- W2894958918 hasAuthorship W2894958918A5018958239 @default.
- W2894958918 hasAuthorship W2894958918A5033887412 @default.
- W2894958918 hasAuthorship W2894958918A5035105762 @default.
- W2894958918 hasAuthorship W2894958918A5068528684 @default.
- W2894958918 hasAuthorship W2894958918A5078907320 @default.
- W2894958918 hasBestOaLocation W28949589181 @default.
- W2894958918 hasConcept C119857082 @default.
- W2894958918 hasConcept C124101348 @default.
- W2894958918 hasConcept C134306372 @default.
- W2894958918 hasConcept C136764020 @default.
- W2894958918 hasConcept C148483581 @default.
- W2894958918 hasConcept C154945302 @default.
- W2894958918 hasConcept C182365436 @default.
- W2894958918 hasConcept C2780009758 @default.
- W2894958918 hasConcept C33923547 @default.
- W2894958918 hasConcept C37616216 @default.
- W2894958918 hasConcept C41008148 @default.
- W2894958918 hasConcept C48921125 @default.
- W2894958918 hasConcept C75684735 @default.
- W2894958918 hasConcept C81917197 @default.
- W2894958918 hasConceptScore W2894958918C119857082 @default.
- W2894958918 hasConceptScore W2894958918C124101348 @default.
- W2894958918 hasConceptScore W2894958918C134306372 @default.
- W2894958918 hasConceptScore W2894958918C136764020 @default.
- W2894958918 hasConceptScore W2894958918C148483581 @default.
- W2894958918 hasConceptScore W2894958918C154945302 @default.
- W2894958918 hasConceptScore W2894958918C182365436 @default.
- W2894958918 hasConceptScore W2894958918C2780009758 @default.
- W2894958918 hasConceptScore W2894958918C33923547 @default.
- W2894958918 hasConceptScore W2894958918C37616216 @default.
- W2894958918 hasConceptScore W2894958918C41008148 @default.