Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894967464> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2894967464 abstract "Abstract Development of highly efficient batteries with more rational understanding and precise control of the underlying microstructural features requires high resolution based characterization tools. Electron microscopy and spectroscopy offers information about the structure, morphology, chemistry and chemical composition of the battery materials on nano and atomic scale enabling us to establish the synthesis-structure-performance relationship and further direct the design of new battery materials with improved and high performance. The key factors for a successful electrochemical system are the structure, morphology, chemistry and chemical information of the component materials. The improvement and further development of energy storage systems is based on detailed knowledge and interpretation of morphology, microstructure and phase composition of the individual components like electrodes, current collector, and separator. Additionally, the long-term stability of batteries is affected by the interaction of several components not only at their common interface but also in the volume of the whole device and in combination with intrinsic emerging mechanical loads. Battery materials require advanced skills and techniques to improve material combinations and synthesis strategies. High quality images, in situ measurements and chemical analysis can contribute to this. The most important reason for the usage of electron microscopy instead of light microscopy is the diffraction limitation of resolution which is dependent of the wavelength. According to the Rayleigh criterion two points are regarded as just resolved when the principal diffraction maximum of one image coincides with the first minimum of the other. The diameter of the corresponding Airy disc is direct proportional to the wavelength. With the Planck constant h = 6.6 · 10 –34 Js, the electron mass m e = 9.1 · 10 –31 kg, e = 1.6 · 10 –19 C, and the speed of light c = 3.0 · 10 8 m/s the wavelength of electrons are given trough the de-Broglie wavelength: $${lambda _{{text{de Broglie}}}} = frac{h}{{{p_e}}} = frac{h}{{{m_e} cdot {v_e}}} = frac{h}{{sqrt {2 cdot {m_e} cdot e cdot U} }} approx frac{{1.22 cdot {{10}^{ - 9}}{text{ m}}}}{{sqrt {frac{U}{{text{V}}}} }},$$ where ${v_e}$ is the velocity of the electrons and U the acceleration voltage for the electrons. For higher acceleration voltages U the relativistic correction is $${lambda _{{text{de Broglie}}}} = frac{h}{{{p_e}}} = frac{h}{{{m_e} cdot {v_e}}}sqrt {1 - frac{{v_e^2}}{{{c^2}}}} = approx frac{{1.22 cdot {{10}^{ - 9}}{text{ m}}}}{{sqrt {frac{U}{V}left( {1 + 0.9788 cdot {{10}^{ - 6}}{text{ }}frac{U}{{text{V}}}} right)} }}$$ Thus, the wavelength of electrons passed through 1 kV to 30 kV acceleration voltages is in the range from 3.9 · 10 –11 m down to 7.0 · 10 –12 m, which is the magnitude utilized for scanning electron microscopy (SEM). Transmission electron microscopes (TEM) require higher acceleration voltages up to 300 kV because the imaging electrons have to transmit the specimen. Therefore, the wavelength in TEMs is even smaller, i.e. 2.0 · 10 –12 m. Hence, the smaller wavelength implies higher resolution for TEM than for SEM. Another important difference between transmission and scanning electron microscopy is based on the type of electrons used for imaging. TEM is based on transmitted electrons and provides the details about morphology, internal composition, structure and crystallinity. SEM uses backscattered or secondary electrons and focuses on the sample’s surface and its composition. The sample for TEM has to be cut thinner whereas there is no such need for SEM sample. Advanced techniques in state-of-the-art electron microscopy are always under development towards their wide applications in various aspects of materials research. Research in the field of advanced TEM techniques of battery systems is driven by the thirst towards energy storage systems in order to have better energy storage capabilities. Different groups worldwide contribute to a basic understanding of the processes that occur during the charging/discharging of a battery, as a basis for optimizing electrode, electrolyte materials and their interfaces. For both, electron microscopy methods benefit from the multitude of interactions which take place after the electron beam hits the specimen surface or passed the specimen volume. The main aspects in respect to battery materials will be reviewed in the following sections." @default.
- W2894967464 created "2018-10-12" @default.
- W2894967464 creator A5058239563 @default.
- W2894967464 creator A5081160226 @default.
- W2894967464 date "2018-10-04" @default.
- W2894967464 modified "2023-09-26" @default.
- W2894967464 title "Characterisation of battery materials by electron and ion microscopy techniques: a review" @default.
- W2894967464 cites W1887039482 @default.
- W2894967464 cites W1970996323 @default.
- W2894967464 cites W1985013794 @default.
- W2894967464 cites W1988561735 @default.
- W2894967464 cites W1994274634 @default.
- W2894967464 cites W2011970149 @default.
- W2894967464 cites W2014350685 @default.
- W2894967464 cites W2015371881 @default.
- W2894967464 cites W2018652376 @default.
- W2894967464 cites W2024565483 @default.
- W2894967464 cites W2025007543 @default.
- W2894967464 cites W2030627888 @default.
- W2894967464 cites W2052319966 @default.
- W2894967464 cites W2053328406 @default.
- W2894967464 cites W2069194786 @default.
- W2894967464 cites W2075904417 @default.
- W2894967464 cites W2081738501 @default.
- W2894967464 cites W2099985803 @default.
- W2894967464 cites W2102014926 @default.
- W2894967464 cites W2105242568 @default.
- W2894967464 cites W2113095835 @default.
- W2894967464 cites W2116343274 @default.
- W2894967464 cites W2139921601 @default.
- W2894967464 cites W2145634883 @default.
- W2894967464 cites W2147624032 @default.
- W2894967464 cites W2151985652 @default.
- W2894967464 cites W2167525260 @default.
- W2894967464 cites W2345369875 @default.
- W2894967464 cites W2593872403 @default.
- W2894967464 doi "https://doi.org/10.1515/psr-2017-0153" @default.
- W2894967464 hasPublicationYear "2018" @default.
- W2894967464 type Work @default.
- W2894967464 sameAs 2894967464 @default.
- W2894967464 citedByCount "2" @default.
- W2894967464 countsByYear W28949674642020 @default.
- W2894967464 countsByYear W28949674642022 @default.
- W2894967464 crossrefType "journal-article" @default.
- W2894967464 hasAuthorship W2894967464A5058239563 @default.
- W2894967464 hasAuthorship W2894967464A5081160226 @default.
- W2894967464 hasConcept C120665830 @default.
- W2894967464 hasConcept C121332964 @default.
- W2894967464 hasConcept C159985019 @default.
- W2894967464 hasConcept C163258240 @default.
- W2894967464 hasConcept C171250308 @default.
- W2894967464 hasConcept C185004128 @default.
- W2894967464 hasConcept C192562407 @default.
- W2894967464 hasConcept C207114421 @default.
- W2894967464 hasConcept C26771246 @default.
- W2894967464 hasConcept C2780841128 @default.
- W2894967464 hasConcept C555008776 @default.
- W2894967464 hasConcept C62520636 @default.
- W2894967464 hasConcept C97355855 @default.
- W2894967464 hasConceptScore W2894967464C120665830 @default.
- W2894967464 hasConceptScore W2894967464C121332964 @default.
- W2894967464 hasConceptScore W2894967464C159985019 @default.
- W2894967464 hasConceptScore W2894967464C163258240 @default.
- W2894967464 hasConceptScore W2894967464C171250308 @default.
- W2894967464 hasConceptScore W2894967464C185004128 @default.
- W2894967464 hasConceptScore W2894967464C192562407 @default.
- W2894967464 hasConceptScore W2894967464C207114421 @default.
- W2894967464 hasConceptScore W2894967464C26771246 @default.
- W2894967464 hasConceptScore W2894967464C2780841128 @default.
- W2894967464 hasConceptScore W2894967464C555008776 @default.
- W2894967464 hasConceptScore W2894967464C62520636 @default.
- W2894967464 hasConceptScore W2894967464C97355855 @default.
- W2894967464 hasIssue "3" @default.
- W2894967464 hasLocation W28949674641 @default.
- W2894967464 hasOpenAccess W2894967464 @default.
- W2894967464 hasPrimaryLocation W28949674641 @default.
- W2894967464 hasRelatedWork W2158706874 @default.
- W2894967464 hasRelatedWork W2352592110 @default.
- W2894967464 hasRelatedWork W2617599841 @default.
- W2894967464 hasRelatedWork W2737492285 @default.
- W2894967464 hasRelatedWork W2737498735 @default.
- W2894967464 hasRelatedWork W2746738132 @default.
- W2894967464 hasRelatedWork W2935371521 @default.
- W2894967464 hasRelatedWork W3085622580 @default.
- W2894967464 hasRelatedWork W4243387708 @default.
- W2894967464 hasRelatedWork W4249938786 @default.
- W2894967464 hasVolume "4" @default.
- W2894967464 isParatext "false" @default.
- W2894967464 isRetracted "false" @default.
- W2894967464 magId "2894967464" @default.
- W2894967464 workType "article" @default.