Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894970413> ?p ?o ?g. }
- W2894970413 abstract "Screening of chemical libraries with 2,000 synthetic compounds identified salinomycin as a hit against influenza A and B viruses, with 50% effective concentrations ranging from 0.4 to 4.3 μM in cells. This compound is a carboxylic polyether ionophore that exchanges monovalent ions for protons across lipid bilayer membranes. Monitoring the time course of viral infection showed that salinomycin blocked nuclear migration of viral nuclear protein (NP), the most abundant component of the viral ribonucleoprotein (vRNP) complex. It caused cytoplasmic accumulation of NP, particularly within perinuclear endosomes, during virus entry. This was primarily associated with failure to acidify the endosomal-lysosomal compartments. Similar to the case with amantadine (AMT), proton channel activity of viral matrix protein 2 (M2) was blocked by salinomycin. Using purified retroviral Gag-based virus-like particles (VLPs) with M2, it was proved that salinomycin directly affects the kinetics of a proton influx into the particles but in a manner different from that of AMT. Notably, oral administration of salinomycin together with the neuraminidase inhibitor oseltamivir phosphate (OSV-P) led to enhanced antiviral effect over that with either compound used alone in influenza A virus-infected mouse models. These results provide a new paradigm for developing antivirals and their combination therapy that control both host and viral factors.IMPORTANCE Influenza virus is a main cause of viral respiratory infection in humans as well as animals, occasionally with high mortality. Circulation of influenza viruses resistant to the matrix protein 2 (M2) inhibitor, amantadine, is highly prevalent. Moreover, the frequency of detection of viruses resistant to the neuraminidase inhibitors, including oseltamivir phosphate (OSV-P) or zanamivir, is also increasing. These issues highlight the need for discovery of new antiviral agents with different mechanisms. Salinomycin as the monovalent cation-proton antiporter exhibited consistent inhibitory effects against influenza A and B viruses. It plays multifunctional roles by blocking endosomal acidification and by inactivating the proton transport function of M2, the key steps for influenza virus uncoating. Notably, salinomycin resulted in marked therapeutic effects in influenza virus-infected mice when combined with OSV-P, suggesting that its chemical derivatives could be developed as an adjuvant antiviral therapy to treat influenza infections resistant or less sensitive to existing drugs." @default.
- W2894970413 created "2018-10-12" @default.
- W2894970413 creator A5018235560 @default.
- W2894970413 creator A5022042072 @default.
- W2894970413 creator A5023766436 @default.
- W2894970413 creator A5031587238 @default.
- W2894970413 creator A5038369580 @default.
- W2894970413 creator A5059299202 @default.
- W2894970413 creator A5075773249 @default.
- W2894970413 creator A5081813546 @default.
- W2894970413 creator A5084973795 @default.
- W2894970413 date "2018-12-15" @default.
- W2894970413 modified "2023-09-30" @default.
- W2894970413 title "Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function" @default.
- W2894970413 cites W1968834355 @default.
- W2894970413 cites W1973524672 @default.
- W2894970413 cites W1976576877 @default.
- W2894970413 cites W1980609312 @default.
- W2894970413 cites W1988570954 @default.
- W2894970413 cites W1993448766 @default.
- W2894970413 cites W1994217603 @default.
- W2894970413 cites W2013453479 @default.
- W2894970413 cites W2016677998 @default.
- W2894970413 cites W2026742412 @default.
- W2894970413 cites W2032986953 @default.
- W2894970413 cites W2035088373 @default.
- W2894970413 cites W2036574626 @default.
- W2894970413 cites W2041091713 @default.
- W2894970413 cites W2043580251 @default.
- W2894970413 cites W2045419504 @default.
- W2894970413 cites W2046326359 @default.
- W2894970413 cites W2047048764 @default.
- W2894970413 cites W2058465738 @default.
- W2894970413 cites W2058499983 @default.
- W2894970413 cites W2071354234 @default.
- W2894970413 cites W2093959051 @default.
- W2894970413 cites W2102335249 @default.
- W2894970413 cites W2102368840 @default.
- W2894970413 cites W2103287127 @default.
- W2894970413 cites W2104641026 @default.
- W2894970413 cites W2112164609 @default.
- W2894970413 cites W2114956308 @default.
- W2894970413 cites W2128825612 @default.
- W2894970413 cites W2128924487 @default.
- W2894970413 cites W2132228958 @default.
- W2894970413 cites W2138645583 @default.
- W2894970413 cites W2142841122 @default.
- W2894970413 cites W2153074293 @default.
- W2894970413 cites W2154243294 @default.
- W2894970413 cites W2155335707 @default.
- W2894970413 cites W2157497102 @default.
- W2894970413 cites W2161029289 @default.
- W2894970413 cites W2162820439 @default.
- W2894970413 cites W2285568030 @default.
- W2894970413 cites W2417703297 @default.
- W2894970413 cites W2497986804 @default.
- W2894970413 cites W2507218408 @default.
- W2894970413 cites W2508161983 @default.
- W2894970413 cites W2529938238 @default.
- W2894970413 cites W2599571391 @default.
- W2894970413 cites W2599976439 @default.
- W2894970413 cites W2753792728 @default.
- W2894970413 cites W2755393567 @default.
- W2894970413 cites W2756130782 @default.
- W2894970413 cites W2775201702 @default.
- W2894970413 cites W41359786 @default.
- W2894970413 cites W1980228427 @default.
- W2894970413 doi "https://doi.org/10.1128/jvi.01441-18" @default.
- W2894970413 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6258947" @default.
- W2894970413 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30282713" @default.
- W2894970413 hasPublicationYear "2018" @default.
- W2894970413 type Work @default.
- W2894970413 sameAs 2894970413 @default.
- W2894970413 citedByCount "45" @default.
- W2894970413 countsByYear W28949704132019 @default.
- W2894970413 countsByYear W28949704132020 @default.
- W2894970413 countsByYear W28949704132021 @default.
- W2894970413 countsByYear W28949704132022 @default.
- W2894970413 countsByYear W28949704132023 @default.
- W2894970413 crossrefType "journal-article" @default.
- W2894970413 hasAuthorship W2894970413A5018235560 @default.
- W2894970413 hasAuthorship W2894970413A5022042072 @default.
- W2894970413 hasAuthorship W2894970413A5023766436 @default.
- W2894970413 hasAuthorship W2894970413A5031587238 @default.
- W2894970413 hasAuthorship W2894970413A5038369580 @default.
- W2894970413 hasAuthorship W2894970413A5059299202 @default.
- W2894970413 hasAuthorship W2894970413A5075773249 @default.
- W2894970413 hasAuthorship W2894970413A5081813546 @default.
- W2894970413 hasAuthorship W2894970413A5084973795 @default.
- W2894970413 hasBestOaLocation W28949704131 @default.
- W2894970413 hasConcept C102747710 @default.
- W2894970413 hasConcept C134164806 @default.
- W2894970413 hasConcept C140704245 @default.
- W2894970413 hasConcept C142724271 @default.
- W2894970413 hasConcept C159047783 @default.
- W2894970413 hasConcept C2522874641 @default.
- W2894970413 hasConcept C2777538117 @default.
- W2894970413 hasConcept C2777546802 @default.
- W2894970413 hasConcept C2777877089 @default.
- W2894970413 hasConcept C2779134260 @default.