Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894980093> ?p ?o ?g. }
- W2894980093 abstract "Inverse problems are encountered in many domains of physics, with analytic continuation of the imaginary Green's function into the real frequency domain being a particularly important example. However, the analytic continuation problem is ill defined and currently no analytic transformation for solving it is known. We present a general framework for building an artificial neural network (ANN) that solves this task with a supervised learning approach. Application of the ANN approach to quantum Monte Carlo calculations and simulated Green's function data demonstrates its high accuracy. By comparing with the commonly used maximum entropy approach, we show that our method can reach the same level of accuracy for low-noise input data, while performing significantly better when the noise strength increases. The computational cost of the proposed neural network approach is reduced by almost three orders of magnitude compared to the maximum entropy method." @default.
- W2894980093 created "2018-10-12" @default.
- W2894980093 creator A5028714734 @default.
- W2894980093 creator A5033711210 @default.
- W2894980093 creator A5073216396 @default.
- W2894980093 creator A5081056071 @default.
- W2894980093 date "2020-02-05" @default.
- W2894980093 modified "2023-10-14" @default.
- W2894980093 title "Artificial Neural Network Approach to the Analytic Continuation Problem" @default.
- W2894980093 cites W1742512077 @default.
- W2894980093 cites W1818039525 @default.
- W2894980093 cites W1971455763 @default.
- W2894980093 cites W1995880257 @default.
- W2894980093 cites W2013697271 @default.
- W2894980093 cites W2046131409 @default.
- W2894980093 cites W2055701077 @default.
- W2894980093 cites W2063322932 @default.
- W2894980093 cites W2085692415 @default.
- W2894980093 cites W2086767269 @default.
- W2894980093 cites W2103496339 @default.
- W2894980093 cites W2148016544 @default.
- W2894980093 cites W2160470000 @default.
- W2894980093 cites W2274213967 @default.
- W2894980093 cites W2419266825 @default.
- W2894980093 cites W2594175971 @default.
- W2894980093 cites W2756291233 @default.
- W2894980093 cites W2806094831 @default.
- W2894980093 cites W3022043600 @default.
- W2894980093 cites W3098900881 @default.
- W2894980093 cites W4235028801 @default.
- W2894980093 cites W4298293704 @default.
- W2894980093 doi "https://doi.org/10.1103/physrevlett.124.056401" @default.
- W2894980093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32083907" @default.
- W2894980093 hasPublicationYear "2020" @default.
- W2894980093 type Work @default.
- W2894980093 sameAs 2894980093 @default.
- W2894980093 citedByCount "60" @default.
- W2894980093 countsByYear W28949800932019 @default.
- W2894980093 countsByYear W28949800932020 @default.
- W2894980093 countsByYear W28949800932021 @default.
- W2894980093 countsByYear W28949800932022 @default.
- W2894980093 countsByYear W28949800932023 @default.
- W2894980093 crossrefType "journal-article" @default.
- W2894980093 hasAuthorship W2894980093A5028714734 @default.
- W2894980093 hasAuthorship W2894980093A5033711210 @default.
- W2894980093 hasAuthorship W2894980093A5073216396 @default.
- W2894980093 hasAuthorship W2894980093A5081056071 @default.
- W2894980093 hasBestOaLocation W28949800932 @default.
- W2894980093 hasConcept C104317684 @default.
- W2894980093 hasConcept C105795698 @default.
- W2894980093 hasConcept C106301342 @default.
- W2894980093 hasConcept C11413529 @default.
- W2894980093 hasConcept C121332964 @default.
- W2894980093 hasConcept C134306372 @default.
- W2894980093 hasConcept C135252773 @default.
- W2894980093 hasConcept C151602998 @default.
- W2894980093 hasConcept C154945302 @default.
- W2894980093 hasConcept C177414767 @default.
- W2894980093 hasConcept C185592680 @default.
- W2894980093 hasConcept C190474826 @default.
- W2894980093 hasConcept C19499675 @default.
- W2894980093 hasConcept C199360897 @default.
- W2894980093 hasConcept C204241405 @default.
- W2894980093 hasConcept C28826006 @default.
- W2894980093 hasConcept C33923547 @default.
- W2894980093 hasConcept C41008148 @default.
- W2894980093 hasConcept C50644808 @default.
- W2894980093 hasConcept C55493867 @default.
- W2894980093 hasConcept C62520636 @default.
- W2894980093 hasConcept C84114770 @default.
- W2894980093 hasConcept C88626702 @default.
- W2894980093 hasConcept C88850056 @default.
- W2894980093 hasConcept C9679016 @default.
- W2894980093 hasConceptScore W2894980093C104317684 @default.
- W2894980093 hasConceptScore W2894980093C105795698 @default.
- W2894980093 hasConceptScore W2894980093C106301342 @default.
- W2894980093 hasConceptScore W2894980093C11413529 @default.
- W2894980093 hasConceptScore W2894980093C121332964 @default.
- W2894980093 hasConceptScore W2894980093C134306372 @default.
- W2894980093 hasConceptScore W2894980093C135252773 @default.
- W2894980093 hasConceptScore W2894980093C151602998 @default.
- W2894980093 hasConceptScore W2894980093C154945302 @default.
- W2894980093 hasConceptScore W2894980093C177414767 @default.
- W2894980093 hasConceptScore W2894980093C185592680 @default.
- W2894980093 hasConceptScore W2894980093C190474826 @default.
- W2894980093 hasConceptScore W2894980093C19499675 @default.
- W2894980093 hasConceptScore W2894980093C199360897 @default.
- W2894980093 hasConceptScore W2894980093C204241405 @default.
- W2894980093 hasConceptScore W2894980093C28826006 @default.
- W2894980093 hasConceptScore W2894980093C33923547 @default.
- W2894980093 hasConceptScore W2894980093C41008148 @default.
- W2894980093 hasConceptScore W2894980093C50644808 @default.
- W2894980093 hasConceptScore W2894980093C55493867 @default.
- W2894980093 hasConceptScore W2894980093C62520636 @default.
- W2894980093 hasConceptScore W2894980093C84114770 @default.
- W2894980093 hasConceptScore W2894980093C88626702 @default.
- W2894980093 hasConceptScore W2894980093C88850056 @default.
- W2894980093 hasConceptScore W2894980093C9679016 @default.
- W2894980093 hasFunder F4320321001 @default.
- W2894980093 hasFunder F4320334791 @default.