Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894982307> ?p ?o ?g. }
- W2894982307 endingPage "689" @default.
- W2894982307 startingPage "673" @default.
- W2894982307 abstract "We propose Neural Graph Matching (NGM) Networks, a novel framework that can learn to recognize a previous unseen 3D action class with only a few examples. We achieve this by leveraging the inherent structure of 3D data through a graphical representation. This allows us to modularize our model and lead to strong data-efficiency in few-shot learning. More specifically, NGM Networks jointly learn a graph generator and a graph matching metric function in an end-to-end fashion to directly optimize the few-shot learning objective. We evaluate NGM on two 3D action recognition datasets, CAD-120 and PiGraphs, and show that learning to generate and match graphs both lead to significant improvement of few-shot 3D action recognition over the holistic baselines." @default.
- W2894982307 created "2018-10-12" @default.
- W2894982307 creator A5004644695 @default.
- W2894982307 creator A5045861403 @default.
- W2894982307 creator A5052829033 @default.
- W2894982307 creator A5081511803 @default.
- W2894982307 creator A5082946919 @default.
- W2894982307 creator A5083677853 @default.
- W2894982307 date "2018-01-01" @default.
- W2894982307 modified "2023-10-17" @default.
- W2894982307 title "Neural Graph Matching Networks for Fewshot 3D Action Recognition" @default.
- W2894982307 cites W1874503286 @default.
- W2894982307 cites W1923184257 @default.
- W2894982307 cites W1927052826 @default.
- W2894982307 cites W2016053056 @default.
- W2894982307 cites W2048821851 @default.
- W2894982307 cites W2073700113 @default.
- W2894982307 cites W2077069816 @default.
- W2894982307 cites W2085735683 @default.
- W2894982307 cites W2099806072 @default.
- W2894982307 cites W2108598243 @default.
- W2894982307 cites W2126359798 @default.
- W2894982307 cites W2146055337 @default.
- W2894982307 cites W2194775991 @default.
- W2894982307 cites W2272191051 @default.
- W2894982307 cites W2290847742 @default.
- W2894982307 cites W2469269585 @default.
- W2894982307 cites W2479423890 @default.
- W2894982307 cites W2487442924 @default.
- W2894982307 cites W2578257192 @default.
- W2894982307 cites W2618799552 @default.
- W2894982307 cites W2962716332 @default.
- W2894982307 cites W2962756421 @default.
- W2894982307 cites W2963021451 @default.
- W2894982307 cites W2963076818 @default.
- W2894982307 cites W2963150697 @default.
- W2894982307 cites W2963165299 @default.
- W2894982307 cites W2963224792 @default.
- W2894982307 cites W2963224980 @default.
- W2894982307 cites W2964118342 @default.
- W2894982307 cites W2964134613 @default.
- W2894982307 cites W3104097132 @default.
- W2894982307 cites W3105705953 @default.
- W2894982307 cites W7800797 @default.
- W2894982307 doi "https://doi.org/10.1007/978-3-030-01246-5_40" @default.
- W2894982307 hasPublicationYear "2018" @default.
- W2894982307 type Work @default.
- W2894982307 sameAs 2894982307 @default.
- W2894982307 citedByCount "74" @default.
- W2894982307 countsByYear W28949823072018 @default.
- W2894982307 countsByYear W28949823072019 @default.
- W2894982307 countsByYear W28949823072020 @default.
- W2894982307 countsByYear W28949823072021 @default.
- W2894982307 countsByYear W28949823072022 @default.
- W2894982307 countsByYear W28949823072023 @default.
- W2894982307 crossrefType "book-chapter" @default.
- W2894982307 hasAuthorship W2894982307A5004644695 @default.
- W2894982307 hasAuthorship W2894982307A5045861403 @default.
- W2894982307 hasAuthorship W2894982307A5052829033 @default.
- W2894982307 hasAuthorship W2894982307A5081511803 @default.
- W2894982307 hasAuthorship W2894982307A5082946919 @default.
- W2894982307 hasAuthorship W2894982307A5083677853 @default.
- W2894982307 hasConcept C105795698 @default.
- W2894982307 hasConcept C119857082 @default.
- W2894982307 hasConcept C121332964 @default.
- W2894982307 hasConcept C132525143 @default.
- W2894982307 hasConcept C153180895 @default.
- W2894982307 hasConcept C154945302 @default.
- W2894982307 hasConcept C162324750 @default.
- W2894982307 hasConcept C163258240 @default.
- W2894982307 hasConcept C165064840 @default.
- W2894982307 hasConcept C176217482 @default.
- W2894982307 hasConcept C21547014 @default.
- W2894982307 hasConcept C2777212361 @default.
- W2894982307 hasConcept C2780992000 @default.
- W2894982307 hasConcept C2987834672 @default.
- W2894982307 hasConcept C33923547 @default.
- W2894982307 hasConcept C41008148 @default.
- W2894982307 hasConcept C62520636 @default.
- W2894982307 hasConcept C80444323 @default.
- W2894982307 hasConceptScore W2894982307C105795698 @default.
- W2894982307 hasConceptScore W2894982307C119857082 @default.
- W2894982307 hasConceptScore W2894982307C121332964 @default.
- W2894982307 hasConceptScore W2894982307C132525143 @default.
- W2894982307 hasConceptScore W2894982307C153180895 @default.
- W2894982307 hasConceptScore W2894982307C154945302 @default.
- W2894982307 hasConceptScore W2894982307C162324750 @default.
- W2894982307 hasConceptScore W2894982307C163258240 @default.
- W2894982307 hasConceptScore W2894982307C165064840 @default.
- W2894982307 hasConceptScore W2894982307C176217482 @default.
- W2894982307 hasConceptScore W2894982307C21547014 @default.
- W2894982307 hasConceptScore W2894982307C2777212361 @default.
- W2894982307 hasConceptScore W2894982307C2780992000 @default.
- W2894982307 hasConceptScore W2894982307C2987834672 @default.
- W2894982307 hasConceptScore W2894982307C33923547 @default.
- W2894982307 hasConceptScore W2894982307C41008148 @default.
- W2894982307 hasConceptScore W2894982307C62520636 @default.
- W2894982307 hasConceptScore W2894982307C80444323 @default.