Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894982503> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2894982503 endingPage "1939" @default.
- W2894982503 startingPage "1926" @default.
- W2894982503 abstract "Talent flow analysis is a process for analyzing and modeling the flows of employees into and out of targeted organizations, regions, or industries. A clear understanding of talent flows is critical for many applications, such as human resource planning, brain drain monitoring, and future workforce forecasting. However, existing studies on talent flow analysis are either qualitative or limited by coarse level quantitative modeling. To this end, in this paper, we provide a fine-grained data-driven approach to model the dynamics and evolving nature of talent flows by leveraging the rich information available in job transition networks. Specifically, we first investigate how to enrich the sparse talent flow data by exploiting the correlations between the stock price movement and the talent flows of public companies. Then, we formalize the talent flow modeling problem as to predict the increments of the edge weights in the dynamic job transition network. In this way, the problem is transformed into a multi-step time series forecasting problem. A deep sequence prediction model is developed based on the recurrent neural network model, which consumes multiple input sources derived from dynamic job transition networks. Finally, experimental results on real-world data show that the proposed model outperforms other benchmark models in terms of prediction accuracy. The results also indicate that the proposed model can provide reasonable performance even if the historical talent flow data are not completely available." @default.
- W2894982503 created "2018-10-12" @default.
- W2894982503 creator A5047858000 @default.
- W2894982503 creator A5049015446 @default.
- W2894982503 creator A5049531727 @default.
- W2894982503 creator A5057045758 @default.
- W2894982503 creator A5067731925 @default.
- W2894982503 date "2019-10-01" @default.
- W2894982503 modified "2023-10-16" @default.
- W2894982503 title "Dynamic Talent Flow Analysis with Deep Sequence Prediction Modeling" @default.
- W2894982503 cites W1689711448 @default.
- W2894982503 cites W179875071 @default.
- W2894982503 cites W1999996900 @default.
- W2894982503 cites W2011227258 @default.
- W2894982503 cites W2011669536 @default.
- W2894982503 cites W2048587746 @default.
- W2894982503 cites W2064675550 @default.
- W2894982503 cites W2067688816 @default.
- W2894982503 cites W2069143585 @default.
- W2894982503 cites W2070442785 @default.
- W2894982503 cites W2075965721 @default.
- W2894982503 cites W2108607279 @default.
- W2894982503 cites W2127895547 @default.
- W2894982503 cites W2128084896 @default.
- W2894982503 cites W2140036815 @default.
- W2894982503 cites W2150355110 @default.
- W2894982503 cites W2157331557 @default.
- W2894982503 cites W2164497524 @default.
- W2894982503 cites W2166293769 @default.
- W2894982503 cites W2172224956 @default.
- W2894982503 cites W2178225550 @default.
- W2894982503 cites W2246827810 @default.
- W2894982503 cites W2512706923 @default.
- W2894982503 cites W2515120505 @default.
- W2894982503 cites W2559708824 @default.
- W2894982503 cites W2585835859 @default.
- W2894982503 cites W2808665672 @default.
- W2894982503 cites W2964325005 @default.
- W2894982503 doi "https://doi.org/10.1109/tkde.2018.2873341" @default.
- W2894982503 hasPublicationYear "2019" @default.
- W2894982503 type Work @default.
- W2894982503 sameAs 2894982503 @default.
- W2894982503 citedByCount "25" @default.
- W2894982503 countsByYear W28949825032020 @default.
- W2894982503 countsByYear W28949825032021 @default.
- W2894982503 countsByYear W28949825032022 @default.
- W2894982503 countsByYear W28949825032023 @default.
- W2894982503 crossrefType "journal-article" @default.
- W2894982503 hasAuthorship W2894982503A5047858000 @default.
- W2894982503 hasAuthorship W2894982503A5049015446 @default.
- W2894982503 hasAuthorship W2894982503A5049531727 @default.
- W2894982503 hasAuthorship W2894982503A5057045758 @default.
- W2894982503 hasAuthorship W2894982503A5067731925 @default.
- W2894982503 hasConcept C124101348 @default.
- W2894982503 hasConcept C154945302 @default.
- W2894982503 hasConcept C2524010 @default.
- W2894982503 hasConcept C2778112365 @default.
- W2894982503 hasConcept C33923547 @default.
- W2894982503 hasConcept C38349280 @default.
- W2894982503 hasConcept C41008148 @default.
- W2894982503 hasConcept C54355233 @default.
- W2894982503 hasConcept C86803240 @default.
- W2894982503 hasConceptScore W2894982503C124101348 @default.
- W2894982503 hasConceptScore W2894982503C154945302 @default.
- W2894982503 hasConceptScore W2894982503C2524010 @default.
- W2894982503 hasConceptScore W2894982503C2778112365 @default.
- W2894982503 hasConceptScore W2894982503C33923547 @default.
- W2894982503 hasConceptScore W2894982503C38349280 @default.
- W2894982503 hasConceptScore W2894982503C41008148 @default.
- W2894982503 hasConceptScore W2894982503C54355233 @default.
- W2894982503 hasConceptScore W2894982503C86803240 @default.
- W2894982503 hasFunder F4320321001 @default.
- W2894982503 hasFunder F4320335777 @default.
- W2894982503 hasFunder F4320336125 @default.
- W2894982503 hasIssue "10" @default.
- W2894982503 hasLocation W28949825031 @default.
- W2894982503 hasOpenAccess W2894982503 @default.
- W2894982503 hasPrimaryLocation W28949825031 @default.
- W2894982503 hasRelatedWork W171814657 @default.
- W2894982503 hasRelatedWork W1770217717 @default.
- W2894982503 hasRelatedWork W2347219288 @default.
- W2894982503 hasRelatedWork W2348097614 @default.
- W2894982503 hasRelatedWork W2354822586 @default.
- W2894982503 hasRelatedWork W2358841807 @default.
- W2894982503 hasRelatedWork W2366221835 @default.
- W2894982503 hasRelatedWork W2373673987 @default.
- W2894982503 hasRelatedWork W2969723784 @default.
- W2894982503 hasRelatedWork W3149424243 @default.
- W2894982503 hasVolume "31" @default.
- W2894982503 isParatext "false" @default.
- W2894982503 isRetracted "false" @default.
- W2894982503 magId "2894982503" @default.
- W2894982503 workType "article" @default.