Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894989261> ?p ?o ?g. }
- W2894989261 endingPage "305" @default.
- W2894989261 startingPage "291" @default.
- W2894989261 abstract "Vibration-based cable tension estimation methods demand complex computations especially when usage of comprehensive cable models is required. Avoiding mathematical calculations, this paper proposes a simple novel framework to estimate the cable tension based on Artificial Neural Networks (ANNs). Employing a comprehensive cable model, a set of data including cable length, cable mass per unit length, cable axial stiffness, cable bending stiffness, cable tension and the corresponding cable natural frequencies is generated for training, validation, and testing of the ANNs. The acquired ANNs are then used to estimate the cable tensions in new Ironton-Russell Bridge and the results are compared against the cable tensions directly measured by lift-off test. It will be shown that for new Ironton-Russell Bridge, using cable length, cable mass per unit length, cable axial stiffness, and first two cable natural frequencies as input features to ANNs, the cable tensions can be accurately estimated." @default.
- W2894989261 created "2018-10-12" @default.
- W2894989261 creator A5016722638 @default.
- W2894989261 creator A5050859741 @default.
- W2894989261 creator A5061012244 @default.
- W2894989261 creator A5075767724 @default.
- W2894989261 creator A5082624522 @default.
- W2894989261 creator A5086724537 @default.
- W2894989261 date "2018-12-01" @default.
- W2894989261 modified "2023-10-18" @default.
- W2894989261 title "Vibration-based cable condition assessment: A novel application of neural networks" @default.
- W2894989261 cites W1964601684 @default.
- W2894989261 cites W1980119668 @default.
- W2894989261 cites W1993647884 @default.
- W2894989261 cites W2002616799 @default.
- W2894989261 cites W2008948027 @default.
- W2894989261 cites W2018086510 @default.
- W2894989261 cites W2021870229 @default.
- W2894989261 cites W2039334881 @default.
- W2894989261 cites W2047214783 @default.
- W2894989261 cites W2049808400 @default.
- W2894989261 cites W2053198125 @default.
- W2894989261 cites W2063277961 @default.
- W2894989261 cites W2064468293 @default.
- W2894989261 cites W2071217843 @default.
- W2894989261 cites W2071956477 @default.
- W2894989261 cites W2080101875 @default.
- W2894989261 cites W2092251574 @default.
- W2894989261 cites W2143190888 @default.
- W2894989261 cites W2154333687 @default.
- W2894989261 cites W2155482699 @default.
- W2894989261 cites W2156041995 @default.
- W2894989261 cites W2161125683 @default.
- W2894989261 cites W2165951432 @default.
- W2894989261 cites W2412812105 @default.
- W2894989261 cites W2469773426 @default.
- W2894989261 cites W2522985950 @default.
- W2894989261 cites W2560132615 @default.
- W2894989261 cites W2601790698 @default.
- W2894989261 cites W2626167717 @default.
- W2894989261 cites W2724191762 @default.
- W2894989261 cites W2737749939 @default.
- W2894989261 cites W2744426469 @default.
- W2894989261 cites W2763685548 @default.
- W2894989261 cites W2767284930 @default.
- W2894989261 cites W2785093363 @default.
- W2894989261 cites W2801683575 @default.
- W2894989261 cites W2802875756 @default.
- W2894989261 doi "https://doi.org/10.1016/j.engstruct.2018.09.060" @default.
- W2894989261 hasPublicationYear "2018" @default.
- W2894989261 type Work @default.
- W2894989261 sameAs 2894989261 @default.
- W2894989261 citedByCount "30" @default.
- W2894989261 countsByYear W28949892612019 @default.
- W2894989261 countsByYear W28949892612020 @default.
- W2894989261 countsByYear W28949892612021 @default.
- W2894989261 countsByYear W28949892612022 @default.
- W2894989261 countsByYear W28949892612023 @default.
- W2894989261 crossrefType "journal-article" @default.
- W2894989261 hasAuthorship W2894989261A5016722638 @default.
- W2894989261 hasAuthorship W2894989261A5050859741 @default.
- W2894989261 hasAuthorship W2894989261A5061012244 @default.
- W2894989261 hasAuthorship W2894989261A5075767724 @default.
- W2894989261 hasAuthorship W2894989261A5082624522 @default.
- W2894989261 hasAuthorship W2894989261A5086724537 @default.
- W2894989261 hasConcept C100776233 @default.
- W2894989261 hasConcept C112950240 @default.
- W2894989261 hasConcept C11413529 @default.
- W2894989261 hasConcept C121332964 @default.
- W2894989261 hasConcept C124101348 @default.
- W2894989261 hasConcept C126322002 @default.
- W2894989261 hasConcept C127413603 @default.
- W2894989261 hasConcept C128172907 @default.
- W2894989261 hasConcept C139002025 @default.
- W2894989261 hasConcept C154945302 @default.
- W2894989261 hasConcept C186068551 @default.
- W2894989261 hasConcept C191897082 @default.
- W2894989261 hasConcept C192562407 @default.
- W2894989261 hasConcept C198394728 @default.
- W2894989261 hasConcept C24890656 @default.
- W2894989261 hasConcept C2779372316 @default.
- W2894989261 hasConcept C41008148 @default.
- W2894989261 hasConcept C45374587 @default.
- W2894989261 hasConcept C50644808 @default.
- W2894989261 hasConcept C66938386 @default.
- W2894989261 hasConcept C71924100 @default.
- W2894989261 hasConcept C78736273 @default.
- W2894989261 hasConceptScore W2894989261C100776233 @default.
- W2894989261 hasConceptScore W2894989261C112950240 @default.
- W2894989261 hasConceptScore W2894989261C11413529 @default.
- W2894989261 hasConceptScore W2894989261C121332964 @default.
- W2894989261 hasConceptScore W2894989261C124101348 @default.
- W2894989261 hasConceptScore W2894989261C126322002 @default.
- W2894989261 hasConceptScore W2894989261C127413603 @default.
- W2894989261 hasConceptScore W2894989261C128172907 @default.
- W2894989261 hasConceptScore W2894989261C139002025 @default.
- W2894989261 hasConceptScore W2894989261C154945302 @default.
- W2894989261 hasConceptScore W2894989261C186068551 @default.