Matches in SemOpenAlex for { <https://semopenalex.org/work/W2894996849> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2894996849 endingPage "4313" @default.
- W2894996849 startingPage "4311" @default.
- W2894996849 abstract "ADVERTISEMENT RETURN TO ISSUEEditorialNEXTArtificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel ChemistryAlex Zhavoronkov*Alex ZhavoronkovJHU, Insilico Medicine, Inc., 9601 Medical Center Dr, Suite 127, Rockville, Maryland 20850, United States*E-mail: [email protected]More by Alex Zhavoronkovhttp://orcid.org/0000-0001-7067-8966Cite this: Mol. Pharmaceutics 2018, 15, 10, 4311–4313Publication Date (Web):October 1, 2018Publication History Published online1 October 2018Published inissue 1 October 2018https://doi.org/10.1021/acs.molpharmaceut.8b00930Copyright © 2018 American Chemical SocietyRIGHTS & PERMISSIONSArticle Views22340Altmetric-Citations72LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InReddit PDF (644 KB) Get e-AlertsSUBJECTS:Biomarkers,Drug discovery,Machine learning,Molecular modeling,Molecules Get e-Alerts" @default.
- W2894996849 created "2018-10-12" @default.
- W2894996849 creator A5020792131 @default.
- W2894996849 date "2018-10-01" @default.
- W2894996849 modified "2023-10-14" @default.
- W2894996849 title "Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry" @default.
- W2894996849 cites W2306570595 @default.
- W2894996849 cites W2397757171 @default.
- W2894996849 cites W2399240576 @default.
- W2894996849 cites W2530887700 @default.
- W2894996849 cites W2747196696 @default.
- W2894996849 cites W2778471552 @default.
- W2894996849 cites W2789074794 @default.
- W2894996849 cites W2793945656 @default.
- W2894996849 cites W2801291332 @default.
- W2894996849 cites W2803587386 @default.
- W2894996849 cites W2805002767 @default.
- W2894996849 cites W2805404971 @default.
- W2894996849 cites W2837999301 @default.
- W2894996849 cites W2883583109 @default.
- W2894996849 cites W2886049025 @default.
- W2894996849 cites W2887039457 @default.
- W2894996849 cites W2891868449 @default.
- W2894996849 cites W3098269892 @default.
- W2894996849 cites W4234276140 @default.
- W2894996849 cites W4252520800 @default.
- W2894996849 doi "https://doi.org/10.1021/acs.molpharmaceut.8b00930" @default.
- W2894996849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30269508" @default.
- W2894996849 hasPublicationYear "2018" @default.
- W2894996849 type Work @default.
- W2894996849 sameAs 2894996849 @default.
- W2894996849 citedByCount "97" @default.
- W2894996849 countsByYear W28949968492018 @default.
- W2894996849 countsByYear W28949968492019 @default.
- W2894996849 countsByYear W28949968492020 @default.
- W2894996849 countsByYear W28949968492021 @default.
- W2894996849 countsByYear W28949968492022 @default.
- W2894996849 countsByYear W28949968492023 @default.
- W2894996849 crossrefType "journal-article" @default.
- W2894996849 hasAuthorship W2894996849A5020792131 @default.
- W2894996849 hasBestOaLocation W28949968491 @default.
- W2894996849 hasConcept C136764020 @default.
- W2894996849 hasConcept C161191863 @default.
- W2894996849 hasConcept C166957645 @default.
- W2894996849 hasConcept C205649164 @default.
- W2894996849 hasConcept C23123220 @default.
- W2894996849 hasConcept C2522767166 @default.
- W2894996849 hasConcept C2778805511 @default.
- W2894996849 hasConcept C41008148 @default.
- W2894996849 hasConcept C79581498 @default.
- W2894996849 hasConceptScore W2894996849C136764020 @default.
- W2894996849 hasConceptScore W2894996849C161191863 @default.
- W2894996849 hasConceptScore W2894996849C166957645 @default.
- W2894996849 hasConceptScore W2894996849C205649164 @default.
- W2894996849 hasConceptScore W2894996849C23123220 @default.
- W2894996849 hasConceptScore W2894996849C2522767166 @default.
- W2894996849 hasConceptScore W2894996849C2778805511 @default.
- W2894996849 hasConceptScore W2894996849C41008148 @default.
- W2894996849 hasConceptScore W2894996849C79581498 @default.
- W2894996849 hasIssue "10" @default.
- W2894996849 hasLocation W28949968491 @default.
- W2894996849 hasLocation W28949968492 @default.
- W2894996849 hasOpenAccess W2894996849 @default.
- W2894996849 hasPrimaryLocation W28949968491 @default.
- W2894996849 hasRelatedWork W1998735690 @default.
- W2894996849 hasRelatedWork W2005740976 @default.
- W2894996849 hasRelatedWork W2093683727 @default.
- W2894996849 hasRelatedWork W2144190808 @default.
- W2894996849 hasRelatedWork W2366644548 @default.
- W2894996849 hasRelatedWork W2376314740 @default.
- W2894996849 hasRelatedWork W2384888906 @default.
- W2894996849 hasRelatedWork W2465616004 @default.
- W2894996849 hasRelatedWork W2748952813 @default.
- W2894996849 hasRelatedWork W3084863322 @default.
- W2894996849 hasVolume "15" @default.
- W2894996849 isParatext "false" @default.
- W2894996849 isRetracted "false" @default.
- W2894996849 magId "2894996849" @default.
- W2894996849 workType "article" @default.