Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895021180> ?p ?o ?g. }
- W2895021180 endingPage "828" @default.
- W2895021180 startingPage "812" @default.
- W2895021180 abstract "Hyperspectral image (HSI) recovery from a single RGB image has attracted much attention, whose performance has recently been shown to be sensitive to the camera spectral sensitivity (CSS). In this paper, we present an efficient convolutional neural network (CNN) based method, which can jointly select the optimal CSS from a candidate dataset and learn a mapping to recover HSI from a single RGB image captured with this algorithmically selected camera. Given a specific CSS, we first present a HSI recovery network, which accounts for the underlying characteristics of the HSI, including spectral nonlinear mapping and spatial similarity. Later, we append a CSS selection layer onto the recovery network, and the optimal CSS can thus be automatically determined from the network weights under the nonnegative sparse constraint. Experimental results show that our HSI recovery network outperforms state-of-the-art methods in terms of both quantitative metrics and perceptive quality, and the selection layer always returns a CSS consistent to the best one determined by exhaustive search." @default.
- W2895021180 created "2018-10-12" @default.
- W2895021180 creator A5007653701 @default.
- W2895021180 creator A5022334521 @default.
- W2895021180 creator A5048033343 @default.
- W2895021180 creator A5067800206 @default.
- W2895021180 creator A5069785885 @default.
- W2895021180 date "2018-01-01" @default.
- W2895021180 modified "2023-10-02" @default.
- W2895021180 title "Joint Camera Spectral Sensitivity Selection and Hyperspectral Image Recovery" @default.
- W2895021180 cites W184807410 @default.
- W2895021180 cites W1971319412 @default.
- W2895021180 cites W1976447720 @default.
- W2895021180 cites W1984864470 @default.
- W2895021180 cites W2002498099 @default.
- W2895021180 cites W2010319424 @default.
- W2895021180 cites W2012946078 @default.
- W2895021180 cites W2014712350 @default.
- W2895021180 cites W2021997546 @default.
- W2895021180 cites W2029285847 @default.
- W2895021180 cites W2030270830 @default.
- W2895021180 cites W2031253668 @default.
- W2895021180 cites W2064500837 @default.
- W2895021180 cites W2070615500 @default.
- W2895021180 cites W2072445211 @default.
- W2895021180 cites W2073362905 @default.
- W2895021180 cites W2082590892 @default.
- W2895021180 cites W2084591647 @default.
- W2895021180 cites W2087263574 @default.
- W2895021180 cites W2092116045 @default.
- W2895021180 cites W2120478201 @default.
- W2895021180 cites W2133665775 @default.
- W2895021180 cites W2149471024 @default.
- W2895021180 cites W2151452149 @default.
- W2895021180 cites W2154761409 @default.
- W2895021180 cites W2155893237 @default.
- W2895021180 cites W2157343005 @default.
- W2895021180 cites W2162842940 @default.
- W2895021180 cites W2163753106 @default.
- W2895021180 cites W2170608472 @default.
- W2895021180 cites W2200474412 @default.
- W2895021180 cites W2221899823 @default.
- W2895021180 cites W2242218935 @default.
- W2895021180 cites W2295576075 @default.
- W2895021180 cites W2302255633 @default.
- W2895021180 cites W2327302159 @default.
- W2895021180 cites W2332185029 @default.
- W2895021180 cites W2520430674 @default.
- W2895021180 cites W2533971697 @default.
- W2895021180 cites W2623365049 @default.
- W2895021180 cites W2748530166 @default.
- W2895021180 cites W2776639132 @default.
- W2895021180 cites W2777033955 @default.
- W2895021180 cites W2777218179 @default.
- W2895021180 cites W2963446712 @default.
- W2895021180 cites W4234549270 @default.
- W2895021180 cites W8423413 @default.
- W2895021180 doi "https://doi.org/10.1007/978-3-030-01219-9_48" @default.
- W2895021180 hasPublicationYear "2018" @default.
- W2895021180 type Work @default.
- W2895021180 sameAs 2895021180 @default.
- W2895021180 citedByCount "39" @default.
- W2895021180 countsByYear W28950211802019 @default.
- W2895021180 countsByYear W28950211802020 @default.
- W2895021180 countsByYear W28950211802021 @default.
- W2895021180 countsByYear W28950211802022 @default.
- W2895021180 countsByYear W28950211802023 @default.
- W2895021180 crossrefType "book-chapter" @default.
- W2895021180 hasAuthorship W2895021180A5007653701 @default.
- W2895021180 hasAuthorship W2895021180A5022334521 @default.
- W2895021180 hasAuthorship W2895021180A5048033343 @default.
- W2895021180 hasAuthorship W2895021180A5067800206 @default.
- W2895021180 hasAuthorship W2895021180A5069785885 @default.
- W2895021180 hasConcept C115961682 @default.
- W2895021180 hasConcept C127413603 @default.
- W2895021180 hasConcept C153180895 @default.
- W2895021180 hasConcept C154945302 @default.
- W2895021180 hasConcept C159078339 @default.
- W2895021180 hasConcept C21200559 @default.
- W2895021180 hasConcept C24326235 @default.
- W2895021180 hasConcept C31972630 @default.
- W2895021180 hasConcept C41008148 @default.
- W2895021180 hasConcept C81363708 @default.
- W2895021180 hasConcept C82990744 @default.
- W2895021180 hasConceptScore W2895021180C115961682 @default.
- W2895021180 hasConceptScore W2895021180C127413603 @default.
- W2895021180 hasConceptScore W2895021180C153180895 @default.
- W2895021180 hasConceptScore W2895021180C154945302 @default.
- W2895021180 hasConceptScore W2895021180C159078339 @default.
- W2895021180 hasConceptScore W2895021180C21200559 @default.
- W2895021180 hasConceptScore W2895021180C24326235 @default.
- W2895021180 hasConceptScore W2895021180C31972630 @default.
- W2895021180 hasConceptScore W2895021180C41008148 @default.
- W2895021180 hasConceptScore W2895021180C81363708 @default.
- W2895021180 hasConceptScore W2895021180C82990744 @default.
- W2895021180 hasLocation W28950211801 @default.
- W2895021180 hasOpenAccess W2895021180 @default.
- W2895021180 hasPrimaryLocation W28950211801 @default.