Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895032321> ?p ?o ?g. }
- W2895032321 endingPage "18778" @default.
- W2895032321 startingPage "18772" @default.
- W2895032321 abstract "Abstract Gram‐negative bacteria develop specific systems for the uptake of scarce nutrients, including vitamin B 12 . These uptake pathways may be utilized for the delivery of biologically relevant molecules into cells. Indeed, it was recently reported that vitamin B 12 transported an antisense peptide nucleic acid (PNA) into Escherichia coli and Salmonella Typhimurium cells. The present studies indicate that the conjugation site of PNA to vitamin B 12 has an impact on PNA transport into bacterial cells. Toward this end, a specifically designed PNA oligomer has been tethered at various positions of vitamin B 12 (central Co, R 5′ ‐OH, c and e amide chains, meso position, and at the hydroxy group of cobinamide) by using known or newly developed methodologies and tested for the uptake of the synthesized conjugates by E. coli . Compounds in which the PNA oligonucleotide was anchored at the R 5′ ‐OH position were transported more efficiently than that of other compounds tethered at the peripheral positions around the corrin ring. Of importance is the fact that, contrary to mammalian organisms, E. coli also takes up cobinamide, which is an incomplete corrinoid. This selectivity opens up ways to fight bacterial infections." @default.
- W2895032321 created "2018-10-12" @default.
- W2895032321 creator A5033871861 @default.
- W2895032321 creator A5043165075 @default.
- W2895032321 creator A5060542883 @default.
- W2895032321 creator A5063215371 @default.
- W2895032321 creator A5066086248 @default.
- W2895032321 creator A5085421410 @default.
- W2895032321 creator A5088500200 @default.
- W2895032321 creator A5090219582 @default.
- W2895032321 date "2018-11-15" @default.
- W2895032321 modified "2023-10-05" @default.
- W2895032321 title "Does a Conjugation Site Affect Transport of Vitamin B<sub>12</sub>–Peptide Nucleic Acid Conjugates into Bacterial Cells?" @default.
- W2895032321 cites W1562122421 @default.
- W2895032321 cites W1562725670 @default.
- W2895032321 cites W1598592258 @default.
- W2895032321 cites W1920681646 @default.
- W2895032321 cites W1975685439 @default.
- W2895032321 cites W1976015798 @default.
- W2895032321 cites W1977402638 @default.
- W2895032321 cites W1979391980 @default.
- W2895032321 cites W1979393045 @default.
- W2895032321 cites W1979973356 @default.
- W2895032321 cites W1989329079 @default.
- W2895032321 cites W1996611856 @default.
- W2895032321 cites W2002957343 @default.
- W2895032321 cites W2003062295 @default.
- W2895032321 cites W2010508088 @default.
- W2895032321 cites W2013763864 @default.
- W2895032321 cites W2021437697 @default.
- W2895032321 cites W2032499519 @default.
- W2895032321 cites W2033180795 @default.
- W2895032321 cites W2038362861 @default.
- W2895032321 cites W2039722695 @default.
- W2895032321 cites W2042317540 @default.
- W2895032321 cites W2046879655 @default.
- W2895032321 cites W2054482694 @default.
- W2895032321 cites W2054866847 @default.
- W2895032321 cites W2066083461 @default.
- W2895032321 cites W2070754040 @default.
- W2895032321 cites W2083400700 @default.
- W2895032321 cites W2086304434 @default.
- W2895032321 cites W2088488532 @default.
- W2895032321 cites W2091911441 @default.
- W2895032321 cites W2099639864 @default.
- W2895032321 cites W2118881590 @default.
- W2895032321 cites W2128888726 @default.
- W2895032321 cites W2131667991 @default.
- W2895032321 cites W2136364818 @default.
- W2895032321 cites W2141795351 @default.
- W2895032321 cites W2144046324 @default.
- W2895032321 cites W2145279121 @default.
- W2895032321 cites W2145887272 @default.
- W2895032321 cites W2164960456 @default.
- W2895032321 cites W2173646698 @default.
- W2895032321 cites W2321737990 @default.
- W2895032321 cites W2322957911 @default.
- W2895032321 cites W2324759635 @default.
- W2895032321 cites W2328407228 @default.
- W2895032321 cites W2462548304 @default.
- W2895032321 cites W2558937881 @default.
- W2895032321 cites W2580145783 @default.
- W2895032321 cites W2582378544 @default.
- W2895032321 cites W2596691774 @default.
- W2895032321 cites W2730007409 @default.
- W2895032321 cites W2744326075 @default.
- W2895032321 cites W2783335512 @default.
- W2895032321 cites W2801769611 @default.
- W2895032321 cites W2803328611 @default.
- W2895032321 cites W4213145277 @default.
- W2895032321 doi "https://doi.org/10.1002/chem.201804304" @default.
- W2895032321 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30286265" @default.
- W2895032321 hasPublicationYear "2018" @default.
- W2895032321 type Work @default.
- W2895032321 sameAs 2895032321 @default.
- W2895032321 citedByCount "11" @default.
- W2895032321 countsByYear W28950323212019 @default.
- W2895032321 countsByYear W28950323212020 @default.
- W2895032321 countsByYear W28950323212021 @default.
- W2895032321 countsByYear W28950323212022 @default.
- W2895032321 countsByYear W28950323212023 @default.
- W2895032321 crossrefType "journal-article" @default.
- W2895032321 hasAuthorship W2895032321A5033871861 @default.
- W2895032321 hasAuthorship W2895032321A5043165075 @default.
- W2895032321 hasAuthorship W2895032321A5060542883 @default.
- W2895032321 hasAuthorship W2895032321A5063215371 @default.
- W2895032321 hasAuthorship W2895032321A5066086248 @default.
- W2895032321 hasAuthorship W2895032321A5085421410 @default.
- W2895032321 hasAuthorship W2895032321A5088500200 @default.
- W2895032321 hasAuthorship W2895032321A5090219582 @default.
- W2895032321 hasConcept C103244968 @default.
- W2895032321 hasConcept C104317684 @default.
- W2895032321 hasConcept C129312508 @default.
- W2895032321 hasConcept C134306372 @default.
- W2895032321 hasConcept C178790620 @default.
- W2895032321 hasConcept C185592680 @default.
- W2895032321 hasConcept C197336794 @default.
- W2895032321 hasConcept C24107716 @default.