Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895038316> ?p ?o ?g. }
- W2895038316 endingPage "65" @default.
- W2895038316 startingPage "61" @default.
- W2895038316 abstract "Abstract Statistical iterative reconstruction (SIR) using multidetector computed tomography (MDCT) is a promising alternative to standard filtered back projection (FBP), because of lower noise generation while maintaining image quality. Hence, we investigated the feasibility of SIR in predicting MDCT-based bone mineral density (BMD) and vertebral bone strength from finite element (FE) analysis. The BMD and FE-predicted bone strength derived from MDCT images reconstructed using standard FBP (F FBP ) and SIR with (F SIR ) and without regularization (F SIRB0 ) were validated against experimental failure loads (F exp ). Statistical iterative reconstruction produced the best quality images with regard to noise, signal-to-noise ratio, and contrast-to-noise ratio. F exp significantly correlated with F FBP , F SIR , and F SIRB0 . F FBP had a significant correlation with F SIRB0 and F SIR . The BMD derived from FBP, SIRB0, and SIR were significantly correlated. Effects of regularization should be further investigated with FE and BMD analysis to allow for an optimal iterative reconstruction algorithm to be implemented in an in vivo scenario." @default.
- W2895038316 created "2018-10-12" @default.
- W2895038316 creator A5001185288 @default.
- W2895038316 creator A5003938965 @default.
- W2895038316 creator A5008508081 @default.
- W2895038316 creator A5022722497 @default.
- W2895038316 creator A5025712718 @default.
- W2895038316 creator A5050134612 @default.
- W2895038316 creator A5061447739 @default.
- W2895038316 creator A5070725191 @default.
- W2895038316 creator A5072566909 @default.
- W2895038316 creator A5081894450 @default.
- W2895038316 creator A5089497604 @default.
- W2895038316 date "2019-01-01" @default.
- W2895038316 modified "2023-09-29" @default.
- W2895038316 title "Effect of Statistically Iterative Image Reconstruction on Vertebral Bone Strength Prediction Using Bone Mineral Density and Finite Element Modeling" @default.
- W2895038316 cites W1553765933 @default.
- W2895038316 cites W1554441783 @default.
- W2895038316 cites W1792995416 @default.
- W2895038316 cites W1964345647 @default.
- W2895038316 cites W1972766017 @default.
- W2895038316 cites W1978709834 @default.
- W2895038316 cites W1982234946 @default.
- W2895038316 cites W1989683982 @default.
- W2895038316 cites W1997833915 @default.
- W2895038316 cites W1998714601 @default.
- W2895038316 cites W1999225731 @default.
- W2895038316 cites W1999320095 @default.
- W2895038316 cites W1999861945 @default.
- W2895038316 cites W2002459300 @default.
- W2895038316 cites W2007251111 @default.
- W2895038316 cites W2015116522 @default.
- W2895038316 cites W2017579767 @default.
- W2895038316 cites W2028646664 @default.
- W2895038316 cites W2033471400 @default.
- W2895038316 cites W2040129532 @default.
- W2895038316 cites W2046354206 @default.
- W2895038316 cites W2054470872 @default.
- W2895038316 cites W2062690825 @default.
- W2895038316 cites W2068025211 @default.
- W2895038316 cites W2075302989 @default.
- W2895038316 cites W2076349714 @default.
- W2895038316 cites W2106975935 @default.
- W2895038316 cites W2129732212 @default.
- W2895038316 cites W2134471668 @default.
- W2895038316 cites W2135587550 @default.
- W2895038316 cites W2136598250 @default.
- W2895038316 cites W2136841696 @default.
- W2895038316 cites W2140778742 @default.
- W2895038316 cites W2143129785 @default.
- W2895038316 cites W2155346040 @default.
- W2895038316 cites W2165167367 @default.
- W2895038316 cites W2167941144 @default.
- W2895038316 cites W2171562225 @default.
- W2895038316 cites W2339449917 @default.
- W2895038316 cites W2480011615 @default.
- W2895038316 cites W2579178307 @default.
- W2895038316 doi "https://doi.org/10.1097/rct.0000000000000788" @default.
- W2895038316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30211797" @default.
- W2895038316 hasPublicationYear "2019" @default.
- W2895038316 type Work @default.
- W2895038316 sameAs 2895038316 @default.
- W2895038316 citedByCount "6" @default.
- W2895038316 countsByYear W28950383162020 @default.
- W2895038316 countsByYear W28950383162021 @default.
- W2895038316 countsByYear W28950383162022 @default.
- W2895038316 crossrefType "journal-article" @default.
- W2895038316 hasAuthorship W2895038316A5001185288 @default.
- W2895038316 hasAuthorship W2895038316A5003938965 @default.
- W2895038316 hasAuthorship W2895038316A5008508081 @default.
- W2895038316 hasAuthorship W2895038316A5022722497 @default.
- W2895038316 hasAuthorship W2895038316A5025712718 @default.
- W2895038316 hasAuthorship W2895038316A5050134612 @default.
- W2895038316 hasAuthorship W2895038316A5061447739 @default.
- W2895038316 hasAuthorship W2895038316A5070725191 @default.
- W2895038316 hasAuthorship W2895038316A5072566909 @default.
- W2895038316 hasAuthorship W2895038316A5081894450 @default.
- W2895038316 hasAuthorship W2895038316A5089497604 @default.
- W2895038316 hasConcept C11413529 @default.
- W2895038316 hasConcept C115961682 @default.
- W2895038316 hasConcept C126322002 @default.
- W2895038316 hasConcept C126838900 @default.
- W2895038316 hasConcept C134306372 @default.
- W2895038316 hasConcept C141379421 @default.
- W2895038316 hasConcept C154945302 @default.
- W2895038316 hasConcept C163716698 @default.
- W2895038316 hasConcept C197231052 @default.
- W2895038316 hasConcept C2776135515 @default.
- W2895038316 hasConcept C2776541429 @default.
- W2895038316 hasConcept C2776886416 @default.
- W2895038316 hasConcept C2989005 @default.
- W2895038316 hasConcept C33923547 @default.
- W2895038316 hasConcept C41008148 @default.
- W2895038316 hasConcept C55020928 @default.
- W2895038316 hasConcept C71924100 @default.
- W2895038316 hasConceptScore W2895038316C11413529 @default.
- W2895038316 hasConceptScore W2895038316C115961682 @default.
- W2895038316 hasConceptScore W2895038316C126322002 @default.