Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895040125> ?p ?o ?g. }
- W2895040125 endingPage "103" @default.
- W2895040125 startingPage "87" @default.
- W2895040125 abstract "In this paper, we study the problem of recovering 3D planar surfaces from a single image of man-made environment. We show that it is possible to directly train a deep neural network to achieve this goal. A novel plane structure-induced loss is proposed to train the network to simultaneously predict a plane segmentation map and the parameters of the 3D planes. Further, to avoid the tedious manual labeling process, we show how to leverage existing large-scale RGB-D dataset to train our network without explicit 3D plane annotations, and how to take advantage of the semantic labels come with the dataset for accurate planar and non-planar classification. Experiment results demonstrate that our method significantly outperforms existing methods, both qualitatively and quantitatively. The recovered planes could potentially benefit many important visual tasks such as vision-based navigation and human-robot interaction." @default.
- W2895040125 created "2018-10-12" @default.
- W2895040125 creator A5001762730 @default.
- W2895040125 creator A5066790280 @default.
- W2895040125 date "2018-01-01" @default.
- W2895040125 modified "2023-10-05" @default.
- W2895040125 title "Recovering 3D Planes from a Single Image via Convolutional Neural Networks" @default.
- W2895040125 cites W1482548926 @default.
- W2895040125 cites W1505712405 @default.
- W2895040125 cites W1519594923 @default.
- W2895040125 cites W1530949933 @default.
- W2895040125 cites W1818727054 @default.
- W2895040125 cites W1903029394 @default.
- W2895040125 cites W2039438219 @default.
- W2895040125 cites W2110158442 @default.
- W2895040125 cites W2116851763 @default.
- W2895040125 cites W2125310925 @default.
- W2895040125 cites W2132947399 @default.
- W2895040125 cites W2146814781 @default.
- W2895040125 cites W2167716896 @default.
- W2895040125 cites W2168439642 @default.
- W2895040125 cites W2170050278 @default.
- W2895040125 cites W218762409 @default.
- W2895040125 cites W2300779272 @default.
- W2895040125 cites W2340897893 @default.
- W2895040125 cites W2425789671 @default.
- W2895040125 cites W2431874326 @default.
- W2895040125 cites W2439650069 @default.
- W2895040125 cites W2528666896 @default.
- W2895040125 cites W2534523274 @default.
- W2895040125 cites W2598108580 @default.
- W2895040125 cites W2963591054 @default.
- W2895040125 cites W2963710007 @default.
- W2895040125 cites W2963881378 @default.
- W2895040125 cites W3100388886 @default.
- W2895040125 cites W337610345 @default.
- W2895040125 doi "https://doi.org/10.1007/978-3-030-01249-6_6" @default.
- W2895040125 hasPublicationYear "2018" @default.
- W2895040125 type Work @default.
- W2895040125 sameAs 2895040125 @default.
- W2895040125 citedByCount "68" @default.
- W2895040125 countsByYear W28950401252018 @default.
- W2895040125 countsByYear W28950401252019 @default.
- W2895040125 countsByYear W28950401252020 @default.
- W2895040125 countsByYear W28950401252021 @default.
- W2895040125 countsByYear W28950401252022 @default.
- W2895040125 countsByYear W28950401252023 @default.
- W2895040125 crossrefType "book-chapter" @default.
- W2895040125 hasAuthorship W2895040125A5001762730 @default.
- W2895040125 hasAuthorship W2895040125A5066790280 @default.
- W2895040125 hasConcept C111919701 @default.
- W2895040125 hasConcept C121684516 @default.
- W2895040125 hasConcept C134786449 @default.
- W2895040125 hasConcept C153083717 @default.
- W2895040125 hasConcept C153180895 @default.
- W2895040125 hasConcept C154945302 @default.
- W2895040125 hasConcept C17825722 @default.
- W2895040125 hasConcept C2524010 @default.
- W2895040125 hasConcept C2984842247 @default.
- W2895040125 hasConcept C31972630 @default.
- W2895040125 hasConcept C33923547 @default.
- W2895040125 hasConcept C41008148 @default.
- W2895040125 hasConcept C50644808 @default.
- W2895040125 hasConcept C81363708 @default.
- W2895040125 hasConcept C82990744 @default.
- W2895040125 hasConcept C89600930 @default.
- W2895040125 hasConcept C98045186 @default.
- W2895040125 hasConceptScore W2895040125C111919701 @default.
- W2895040125 hasConceptScore W2895040125C121684516 @default.
- W2895040125 hasConceptScore W2895040125C134786449 @default.
- W2895040125 hasConceptScore W2895040125C153083717 @default.
- W2895040125 hasConceptScore W2895040125C153180895 @default.
- W2895040125 hasConceptScore W2895040125C154945302 @default.
- W2895040125 hasConceptScore W2895040125C17825722 @default.
- W2895040125 hasConceptScore W2895040125C2524010 @default.
- W2895040125 hasConceptScore W2895040125C2984842247 @default.
- W2895040125 hasConceptScore W2895040125C31972630 @default.
- W2895040125 hasConceptScore W2895040125C33923547 @default.
- W2895040125 hasConceptScore W2895040125C41008148 @default.
- W2895040125 hasConceptScore W2895040125C50644808 @default.
- W2895040125 hasConceptScore W2895040125C81363708 @default.
- W2895040125 hasConceptScore W2895040125C82990744 @default.
- W2895040125 hasConceptScore W2895040125C89600930 @default.
- W2895040125 hasConceptScore W2895040125C98045186 @default.
- W2895040125 hasLocation W28950401251 @default.
- W2895040125 hasOpenAccess W2895040125 @default.
- W2895040125 hasPrimaryLocation W28950401251 @default.
- W2895040125 hasRelatedWork W1669643531 @default.
- W2895040125 hasRelatedWork W2005437358 @default.
- W2895040125 hasRelatedWork W2052518016 @default.
- W2895040125 hasRelatedWork W2283162247 @default.
- W2895040125 hasRelatedWork W2314488738 @default.
- W2895040125 hasRelatedWork W2517104666 @default.
- W2895040125 hasRelatedWork W2524507886 @default.
- W2895040125 hasRelatedWork W2771653066 @default.
- W2895040125 hasRelatedWork W2774550181 @default.
- W2895040125 hasRelatedWork W4212983513 @default.
- W2895040125 isParatext "false" @default.