Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895044314> ?p ?o ?g. }
- W2895044314 endingPage "2710" @default.
- W2895044314 startingPage "2699" @default.
- W2895044314 abstract "Supramolecular self-assembly, which creates the ordered structures as a result of spontaneous organization of building blocks driven by noncovalent interactions (NCIs), is ubiquitous in nature. Recently, it has become increasingly clear that nature often builds up complex structures by employing a hierarchical self-assembly (HSA) strategy, in which the components are brought together in a stepwise process via multiple NCIs. Inspired by the dedicated biological structures in nature, HSA has been widely explored to construct well-defined assemblies with increasing complexity. The employment of direct metal-ligand bonds to drive the formation of discrete metallosupramolecular architectures has proven to be a highly efficient strategy to prepare structurally diverse architectures like two-dimensional (2-D) polygons and three-dimensional (3-D) polyhedra with well-defined shapes, sizes, and geometries. Such well-defined organometallic assemblies provide an ideal platform for designing novel artificial supramolecular systems with the increasing complexity though HSA. The presence of a well-defined organometallic scaffold brings an additional dimension to the final nanoscale structures. Moreover, the multilevel dynamic nature of hierarchical self-assemblies brings more structural and functional possibilities of resultant supramolecular systems. This Account will focus on our recent advance on construction of stimuli-responsive functional materials through HSA involving coordination interactions. In our study, a series of functionalized metallacycles were first constructed through coordination-driven self-assembly (CDSA). Then, the secondary noncovalent interaction sites were integrated within the functionalized metallacycle system via either preassembly or postassembly approach. Different segments, such as alkyl chains, dendrimers, cholesteryl moiety, covalent macrocycles, and even polymeric fragments, which could provide hydrophobic and hydrophilic interactions, van der Waals forces, hydrogen bonding, CH-π and π-π interactions, and host-guest interactions, have been utilized to provide the secondary NCIs. Further self-assembly of functionalized metallacycles gives rise to the formation of complex higher-order structures driven by other NCIs by taking advantages of orthogonal property of coordination bonds with other NCIs. By changing the type of additional NCIs embodied in building blocks, different supramolecular architectures, such as the ordered nanostructures, supramolecular polymers and gels, fluorescent materials and sensors, have been successfully prepared with the tailored chemical and physical properties. In particular, the dynamic nature of coordination bonds as well as other NCIs endows final assemblies with stimuli-responsive functions. Collectively, our studies suggest that combining coordination and other NCIs in a well-defined and precise manner is a highly efficient strategy to achieve the complex architectures and functional materials. Therefore, it is very promising to develop the desired functional materials with high precision and fidelity by employing HSA involving coordination interactions." @default.
- W2895044314 created "2018-10-12" @default.
- W2895044314 creator A5002185965 @default.
- W2895044314 creator A5037909012 @default.
- W2895044314 date "2018-10-04" @default.
- W2895044314 modified "2023-10-17" @default.
- W2895044314 title "Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions" @default.
- W2895044314 cites W1250929640 @default.
- W2895044314 cites W1758451924 @default.
- W2895044314 cites W1787782204 @default.
- W2895044314 cites W1965743698 @default.
- W2895044314 cites W1967308407 @default.
- W2895044314 cites W1975192546 @default.
- W2895044314 cites W1981742761 @default.
- W2895044314 cites W1986876950 @default.
- W2895044314 cites W1989180035 @default.
- W2895044314 cites W1992406775 @default.
- W2895044314 cites W1994486848 @default.
- W2895044314 cites W1996449370 @default.
- W2895044314 cites W2000096824 @default.
- W2895044314 cites W2000222205 @default.
- W2895044314 cites W2004746423 @default.
- W2895044314 cites W2016466005 @default.
- W2895044314 cites W2021414372 @default.
- W2895044314 cites W2031876508 @default.
- W2895044314 cites W2032172106 @default.
- W2895044314 cites W2034015984 @default.
- W2895044314 cites W2043962204 @default.
- W2895044314 cites W2050009995 @default.
- W2895044314 cites W2069507241 @default.
- W2895044314 cites W2075987122 @default.
- W2895044314 cites W2088252867 @default.
- W2895044314 cites W2088762585 @default.
- W2895044314 cites W2092687179 @default.
- W2895044314 cites W2123155732 @default.
- W2895044314 cites W2133413783 @default.
- W2895044314 cites W2136373619 @default.
- W2895044314 cites W2137489621 @default.
- W2895044314 cites W2156190700 @default.
- W2895044314 cites W2157562270 @default.
- W2895044314 cites W2238969507 @default.
- W2895044314 cites W2288349587 @default.
- W2895044314 cites W2299481623 @default.
- W2895044314 cites W2309894847 @default.
- W2895044314 cites W2310812958 @default.
- W2895044314 cites W2315878918 @default.
- W2895044314 cites W2320531280 @default.
- W2895044314 cites W2324625176 @default.
- W2895044314 cites W2327880325 @default.
- W2895044314 cites W2329331364 @default.
- W2895044314 cites W2330014148 @default.
- W2895044314 cites W2332329984 @default.
- W2895044314 cites W2460955772 @default.
- W2895044314 cites W2496632825 @default.
- W2895044314 cites W2507456921 @default.
- W2895044314 cites W2609941096 @default.
- W2895044314 cites W2613282436 @default.
- W2895044314 cites W2750092766 @default.
- W2895044314 cites W2752295367 @default.
- W2895044314 cites W2776445054 @default.
- W2895044314 cites W2789477420 @default.
- W2895044314 cites W2798045994 @default.
- W2895044314 doi "https://doi.org/10.1021/acs.accounts.8b00317" @default.
- W2895044314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30285407" @default.
- W2895044314 hasPublicationYear "2018" @default.
- W2895044314 type Work @default.
- W2895044314 sameAs 2895044314 @default.
- W2895044314 citedByCount "284" @default.
- W2895044314 countsByYear W28950443142018 @default.
- W2895044314 countsByYear W28950443142019 @default.
- W2895044314 countsByYear W28950443142020 @default.
- W2895044314 countsByYear W28950443142021 @default.
- W2895044314 countsByYear W28950443142022 @default.
- W2895044314 countsByYear W28950443142023 @default.
- W2895044314 crossrefType "journal-article" @default.
- W2895044314 hasAuthorship W2895044314A5002185965 @default.
- W2895044314 hasAuthorship W2895044314A5037909012 @default.
- W2895044314 hasConcept C112887158 @default.
- W2895044314 hasConcept C137277065 @default.
- W2895044314 hasConcept C171250308 @default.
- W2895044314 hasConcept C178790620 @default.
- W2895044314 hasConcept C185592680 @default.
- W2895044314 hasConcept C192562407 @default.
- W2895044314 hasConcept C199360897 @default.
- W2895044314 hasConcept C26856880 @default.
- W2895044314 hasConcept C2776568683 @default.
- W2895044314 hasConcept C2780801425 @default.
- W2895044314 hasConcept C32909587 @default.
- W2895044314 hasConcept C41008148 @default.
- W2895044314 hasConcept C71240020 @default.
- W2895044314 hasConcept C93275456 @default.
- W2895044314 hasConceptScore W2895044314C112887158 @default.
- W2895044314 hasConceptScore W2895044314C137277065 @default.
- W2895044314 hasConceptScore W2895044314C171250308 @default.
- W2895044314 hasConceptScore W2895044314C178790620 @default.
- W2895044314 hasConceptScore W2895044314C185592680 @default.
- W2895044314 hasConceptScore W2895044314C192562407 @default.
- W2895044314 hasConceptScore W2895044314C199360897 @default.