Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895050915> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2895050915 endingPage "289" @default.
- W2895050915 startingPage "270" @default.
- W2895050915 abstract "For tools that generate more efficient flight routes or reroute advisories, it is important to ensure compatibility of automation and autonomy decisions with human objectives so as to ensure acceptability by the human operators. In this paper, the authors developed a proof of concept predictor of operational acceptability for route changes during a flight. Such a capability could have applications in automation tools that identify more efficient routes around airspace impacted by weather or congestion and that better meet airline preferences. The predictor is based on applying data mining techniques, including logistic regression, a decision tree, a support vector machine, a random forest and Adaptive Boost, to historical flight plan amendment data reported during operations and field experiments. Cross validation was used for model development, while nested cross validation was used to validate the models. The model found to have the best performance in predicting air traffic controller acceptance or rejection of a route change, using the available data from Fort Worth Air Traffic Control Center and its adjacent Centers, was the random forest, with an F-score of 0.77. This result indicates that the operational acceptance of reroute requests does indeed have some level of predictability, and that, with suitable data, models can be trained to predict the operational acceptability of reroute requests. Such models may ultimately be used to inform route selection by decision support tools, contributing to the development of increasingly autonomous systems that are capable of routing aircraft with less human input than is currently the case." @default.
- W2895050915 created "2018-10-12" @default.
- W2895050915 creator A5020107597 @default.
- W2895050915 creator A5057694040 @default.
- W2895050915 creator A5090472979 @default.
- W2895050915 date "2018-11-01" @default.
- W2895050915 modified "2023-10-16" @default.
- W2895050915 title "Predicting the operational acceptance of airborne flight reroute requests using data mining" @default.
- W2895050915 cites W1988790447 @default.
- W2895050915 cites W2051166975 @default.
- W2895050915 cites W2062013435 @default.
- W2895050915 cites W2078644189 @default.
- W2895050915 cites W2086118361 @default.
- W2895050915 cites W2096945460 @default.
- W2895050915 cites W2117190680 @default.
- W2895050915 cites W2148143831 @default.
- W2895050915 cites W2158698691 @default.
- W2895050915 cites W2268212270 @default.
- W2895050915 cites W2399928064 @default.
- W2895050915 cites W2522247003 @default.
- W2895050915 cites W2549412458 @default.
- W2895050915 cites W2911964244 @default.
- W2895050915 cites W616294736 @default.
- W2895050915 doi "https://doi.org/10.1016/j.trc.2018.09.024" @default.
- W2895050915 hasPublicationYear "2018" @default.
- W2895050915 type Work @default.
- W2895050915 sameAs 2895050915 @default.
- W2895050915 citedByCount "8" @default.
- W2895050915 countsByYear W28950509152020 @default.
- W2895050915 countsByYear W28950509152021 @default.
- W2895050915 countsByYear W28950509152022 @default.
- W2895050915 countsByYear W28950509152023 @default.
- W2895050915 crossrefType "journal-article" @default.
- W2895050915 hasAuthorship W2895050915A5020107597 @default.
- W2895050915 hasAuthorship W2895050915A5057694040 @default.
- W2895050915 hasAuthorship W2895050915A5090472979 @default.
- W2895050915 hasBestOaLocation W28950509152 @default.
- W2895050915 hasConcept C107327155 @default.
- W2895050915 hasConcept C115901376 @default.
- W2895050915 hasConcept C121332964 @default.
- W2895050915 hasConcept C124101348 @default.
- W2895050915 hasConcept C127413603 @default.
- W2895050915 hasConcept C146978453 @default.
- W2895050915 hasConcept C166961238 @default.
- W2895050915 hasConcept C197640229 @default.
- W2895050915 hasConcept C41008148 @default.
- W2895050915 hasConcept C42475967 @default.
- W2895050915 hasConcept C62520636 @default.
- W2895050915 hasConcept C78519656 @default.
- W2895050915 hasConcept C84525736 @default.
- W2895050915 hasConceptScore W2895050915C107327155 @default.
- W2895050915 hasConceptScore W2895050915C115901376 @default.
- W2895050915 hasConceptScore W2895050915C121332964 @default.
- W2895050915 hasConceptScore W2895050915C124101348 @default.
- W2895050915 hasConceptScore W2895050915C127413603 @default.
- W2895050915 hasConceptScore W2895050915C146978453 @default.
- W2895050915 hasConceptScore W2895050915C166961238 @default.
- W2895050915 hasConceptScore W2895050915C197640229 @default.
- W2895050915 hasConceptScore W2895050915C41008148 @default.
- W2895050915 hasConceptScore W2895050915C42475967 @default.
- W2895050915 hasConceptScore W2895050915C62520636 @default.
- W2895050915 hasConceptScore W2895050915C78519656 @default.
- W2895050915 hasConceptScore W2895050915C84525736 @default.
- W2895050915 hasFunder F4320306101 @default.
- W2895050915 hasLocation W28950509151 @default.
- W2895050915 hasLocation W28950509152 @default.
- W2895050915 hasOpenAccess W2895050915 @default.
- W2895050915 hasPrimaryLocation W28950509151 @default.
- W2895050915 hasRelatedWork W1505304632 @default.
- W2895050915 hasRelatedWork W1973337422 @default.
- W2895050915 hasRelatedWork W1978585560 @default.
- W2895050915 hasRelatedWork W2093471187 @default.
- W2895050915 hasRelatedWork W2134918767 @default.
- W2895050915 hasRelatedWork W2139112744 @default.
- W2895050915 hasRelatedWork W2154259362 @default.
- W2895050915 hasRelatedWork W2165605944 @default.
- W2895050915 hasRelatedWork W44849365 @default.
- W2895050915 hasRelatedWork W615204497 @default.
- W2895050915 hasVolume "96" @default.
- W2895050915 isParatext "false" @default.
- W2895050915 isRetracted "false" @default.
- W2895050915 magId "2895050915" @default.
- W2895050915 workType "article" @default.