Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895051145> ?p ?o ?g. }
- W2895051145 endingPage "22" @default.
- W2895051145 startingPage "12" @default.
- W2895051145 abstract "This work presents a systematic study for testing the effectiveness of Self-Organizing Map (SOM) neural networks in filtering magnetotelluric (MT) data affected by cultural noise. Although the MT method is widely used for geophysical investigation of the Earth’s interior, it is very sensitive to anthropogenic noise sources (e.g., power lines, electric railways, etc.), which can generate transient artificial electromagnetic fields disturbing the MT records. Thus, when not properly detected, man-made noises could lead to a distortion of the MT impedance tensors and consequently to wrong estimate of the resulting subsoil resistivity distribution. The choice to use SOM networks to filter noisy MT data comes from the expectation that the impedance tensors, estimated by Discrete Wavelet Transform analysis of MT time series, will cluster differently in presence of noise. This expectation is confirmed by the results of our extensive study on synthetic MT signals affected by temporally localized noise, which show that noisy and noise-free impedance tensor values distribute in well separate clusters. Moreover, as the SOM analysis provides a grid of weights (clusters), each one close to a particular subset of the input data, a criterion is proposed for selecting the cluster that gives the most reliable impedance tensor estimate. An application of the proposed SOM-based filtering procedure to actual MT data demonstrates its efficiency in denoising real MT signals." @default.
- W2895051145 created "2018-10-12" @default.
- W2895051145 creator A5000280210 @default.
- W2895051145 creator A5019397781 @default.
- W2895051145 creator A5025404164 @default.
- W2895051145 creator A5044255687 @default.
- W2895051145 creator A5054909298 @default.
- W2895051145 creator A5076022753 @default.
- W2895051145 date "2018-12-01" @default.
- W2895051145 modified "2023-10-03" @default.
- W2895051145 title "Filtering of noisy magnetotelluric signals by SOM neural networks" @default.
- W2895051145 cites W1970202318 @default.
- W2895051145 cites W1981535646 @default.
- W2895051145 cites W1986890425 @default.
- W2895051145 cites W1987046510 @default.
- W2895051145 cites W1992629373 @default.
- W2895051145 cites W1999247171 @default.
- W2895051145 cites W2003538060 @default.
- W2895051145 cites W2005298535 @default.
- W2895051145 cites W2006140957 @default.
- W2895051145 cites W2046079134 @default.
- W2895051145 cites W2065512433 @default.
- W2895051145 cites W2079810998 @default.
- W2895051145 cites W2082360933 @default.
- W2895051145 cites W2096972703 @default.
- W2895051145 cites W2100170079 @default.
- W2895051145 cites W2101980984 @default.
- W2895051145 cites W2107379882 @default.
- W2895051145 cites W2110040548 @default.
- W2895051145 cites W2112953047 @default.
- W2895051145 cites W2113459304 @default.
- W2895051145 cites W2116568968 @default.
- W2895051145 cites W2122473047 @default.
- W2895051145 cites W2129845160 @default.
- W2895051145 cites W2137398591 @default.
- W2895051145 cites W2142061614 @default.
- W2895051145 cites W2144734679 @default.
- W2895051145 cites W2159438771 @default.
- W2895051145 cites W2160868630 @default.
- W2895051145 cites W2163311513 @default.
- W2895051145 cites W2169443933 @default.
- W2895051145 cites W2170255244 @default.
- W2895051145 cites W2566657310 @default.
- W2895051145 doi "https://doi.org/10.1016/j.pepi.2018.10.004" @default.
- W2895051145 hasPublicationYear "2018" @default.
- W2895051145 type Work @default.
- W2895051145 sameAs 2895051145 @default.
- W2895051145 citedByCount "10" @default.
- W2895051145 countsByYear W28950511452019 @default.
- W2895051145 countsByYear W28950511452020 @default.
- W2895051145 countsByYear W28950511452021 @default.
- W2895051145 countsByYear W28950511452022 @default.
- W2895051145 countsByYear W28950511452023 @default.
- W2895051145 crossrefType "journal-article" @default.
- W2895051145 hasAuthorship W2895051145A5000280210 @default.
- W2895051145 hasAuthorship W2895051145A5019397781 @default.
- W2895051145 hasAuthorship W2895051145A5025404164 @default.
- W2895051145 hasAuthorship W2895051145A5044255687 @default.
- W2895051145 hasAuthorship W2895051145A5054909298 @default.
- W2895051145 hasAuthorship W2895051145A5076022753 @default.
- W2895051145 hasConcept C106131492 @default.
- W2895051145 hasConcept C111168008 @default.
- W2895051145 hasConcept C112313211 @default.
- W2895051145 hasConcept C11413529 @default.
- W2895051145 hasConcept C115961682 @default.
- W2895051145 hasConcept C119599485 @default.
- W2895051145 hasConcept C126780896 @default.
- W2895051145 hasConcept C127413603 @default.
- W2895051145 hasConcept C153180895 @default.
- W2895051145 hasConcept C154945302 @default.
- W2895051145 hasConcept C155281189 @default.
- W2895051145 hasConcept C163294075 @default.
- W2895051145 hasConcept C17829176 @default.
- W2895051145 hasConcept C194257627 @default.
- W2895051145 hasConcept C196216189 @default.
- W2895051145 hasConcept C202444582 @default.
- W2895051145 hasConcept C2776257435 @default.
- W2895051145 hasConcept C31972630 @default.
- W2895051145 hasConcept C33923547 @default.
- W2895051145 hasConcept C41008148 @default.
- W2895051145 hasConcept C47432892 @default.
- W2895051145 hasConcept C50644808 @default.
- W2895051145 hasConcept C69990965 @default.
- W2895051145 hasConcept C76155785 @default.
- W2895051145 hasConcept C99498987 @default.
- W2895051145 hasConceptScore W2895051145C106131492 @default.
- W2895051145 hasConceptScore W2895051145C111168008 @default.
- W2895051145 hasConceptScore W2895051145C112313211 @default.
- W2895051145 hasConceptScore W2895051145C11413529 @default.
- W2895051145 hasConceptScore W2895051145C115961682 @default.
- W2895051145 hasConceptScore W2895051145C119599485 @default.
- W2895051145 hasConceptScore W2895051145C126780896 @default.
- W2895051145 hasConceptScore W2895051145C127413603 @default.
- W2895051145 hasConceptScore W2895051145C153180895 @default.
- W2895051145 hasConceptScore W2895051145C154945302 @default.
- W2895051145 hasConceptScore W2895051145C155281189 @default.
- W2895051145 hasConceptScore W2895051145C163294075 @default.
- W2895051145 hasConceptScore W2895051145C17829176 @default.