Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895055893> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2895055893 endingPage "1041" @default.
- W2895055893 startingPage "1032" @default.
- W2895055893 abstract "microRNAs (miRNAs) are small and important non-coding RNAs that regulate gene expression in transcriptional and post-transcriptional level by combining with their targets (genes). Predicting miRNA targets is an important problem in biological research. It is expensive and time-consuming to identify miRNA targets by using biological experiments. Many computational methods have been proposed to predict miRNA targets. In this study, we develop a novel method, named miRTRS, for predicting miRNA targets based on a recommendation algorithm. miRTRS can predict targets for an isolated (new) miRNA with miRNA sequence similarity, as well as isolated (new) targets for a miRNA with gene sequence similarity. Furthermore, when compared to supervised machine learning methods, miRTRS does not need to select negative samples. We use 10-fold cross validation and independent datasets to evaluate the performance of our method. We compared miRTRS with two most recently published methods for miRNA target prediction. The experimental results have shown that our method miRTRS outperforms competing prediction methods in terms of AUC and other evaluation metrics." @default.
- W2895055893 created "2018-10-12" @default.
- W2895055893 creator A5000628009 @default.
- W2895055893 creator A5038582529 @default.
- W2895055893 creator A5041285376 @default.
- W2895055893 creator A5058499562 @default.
- W2895055893 creator A5062035232 @default.
- W2895055893 creator A5091157395 @default.
- W2895055893 date "2020-05-01" @default.
- W2895055893 modified "2023-09-26" @default.
- W2895055893 title "miRTRS: A Recommendation Algorithm for Predicting miRNA Targets" @default.
- W2895055893 cites W144423133 @default.
- W2895055893 cites W1582076997 @default.
- W2895055893 cites W1890374229 @default.
- W2895055893 cites W1966241066 @default.
- W2895055893 cites W2001508508 @default.
- W2895055893 cites W2002995168 @default.
- W2895055893 cites W2016106370 @default.
- W2895055893 cites W2028071319 @default.
- W2895055893 cites W2028962637 @default.
- W2895055893 cites W2040851473 @default.
- W2895055893 cites W2050869737 @default.
- W2895055893 cites W2053611784 @default.
- W2895055893 cites W2053835153 @default.
- W2895055893 cites W2074231493 @default.
- W2895055893 cites W2075995228 @default.
- W2895055893 cites W2077327925 @default.
- W2895055893 cites W2083155754 @default.
- W2895055893 cites W2083381199 @default.
- W2895055893 cites W2087064593 @default.
- W2895055893 cites W2094253263 @default.
- W2895055893 cites W2099888774 @default.
- W2895055893 cites W2101117089 @default.
- W2895055893 cites W2107180520 @default.
- W2895055893 cites W2111094216 @default.
- W2895055893 cites W2120456037 @default.
- W2895055893 cites W2129931962 @default.
- W2895055893 cites W2130388134 @default.
- W2895055893 cites W2130674065 @default.
- W2895055893 cites W2133658633 @default.
- W2895055893 cites W2144896290 @default.
- W2895055893 cites W2154718035 @default.
- W2895055893 cites W2162674813 @default.
- W2895055893 cites W2163199119 @default.
- W2895055893 cites W2174734928 @default.
- W2895055893 cites W2333207005 @default.
- W2895055893 cites W2337379458 @default.
- W2895055893 cites W2344280239 @default.
- W2895055893 cites W2463737032 @default.
- W2895055893 cites W2771019114 @default.
- W2895055893 cites W2790385355 @default.
- W2895055893 cites W2801501532 @default.
- W2895055893 cites W4237011200 @default.
- W2895055893 doi "https://doi.org/10.1109/tcbb.2018.2873299" @default.
- W2895055893 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30281478" @default.
- W2895055893 hasPublicationYear "2020" @default.
- W2895055893 type Work @default.
- W2895055893 sameAs 2895055893 @default.
- W2895055893 citedByCount "8" @default.
- W2895055893 countsByYear W28950558932018 @default.
- W2895055893 countsByYear W28950558932019 @default.
- W2895055893 countsByYear W28950558932020 @default.
- W2895055893 countsByYear W28950558932021 @default.
- W2895055893 countsByYear W28950558932022 @default.
- W2895055893 crossrefType "journal-article" @default.
- W2895055893 hasAuthorship W2895055893A5000628009 @default.
- W2895055893 hasAuthorship W2895055893A5038582529 @default.
- W2895055893 hasAuthorship W2895055893A5041285376 @default.
- W2895055893 hasAuthorship W2895055893A5058499562 @default.
- W2895055893 hasAuthorship W2895055893A5062035232 @default.
- W2895055893 hasAuthorship W2895055893A5091157395 @default.
- W2895055893 hasConcept C11413529 @default.
- W2895055893 hasConcept C154945302 @default.
- W2895055893 hasConcept C41008148 @default.
- W2895055893 hasConceptScore W2895055893C11413529 @default.
- W2895055893 hasConceptScore W2895055893C154945302 @default.
- W2895055893 hasConceptScore W2895055893C41008148 @default.
- W2895055893 hasIssue "3" @default.
- W2895055893 hasLocation W28950558931 @default.
- W2895055893 hasOpenAccess W2895055893 @default.
- W2895055893 hasPrimaryLocation W28950558931 @default.
- W2895055893 hasRelatedWork W2003465964 @default.
- W2895055893 hasRelatedWork W2333698505 @default.
- W2895055893 hasRelatedWork W2351491280 @default.
- W2895055893 hasRelatedWork W2371447506 @default.
- W2895055893 hasRelatedWork W2386767533 @default.
- W2895055893 hasRelatedWork W2390279801 @default.
- W2895055893 hasRelatedWork W2748952813 @default.
- W2895055893 hasRelatedWork W2899084033 @default.
- W2895055893 hasRelatedWork W303980170 @default.
- W2895055893 hasRelatedWork W3107474891 @default.
- W2895055893 hasVolume "17" @default.
- W2895055893 isParatext "false" @default.
- W2895055893 isRetracted "false" @default.
- W2895055893 magId "2895055893" @default.
- W2895055893 workType "article" @default.