Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895061394> ?p ?o ?g. }
- W2895061394 endingPage "173" @default.
- W2895061394 startingPage "157" @default.
- W2895061394 abstract "Group-based sparse representation (GSR) models of natural images decompose each patch in group as a sparse linear combination from an over-complete dictionary and assume the sparse coefficients of each patch have a common set of nonzero support. Although the GSR models have shown great success in image restoration (IR) applications, however, current models are simple extension of traditional L0 or L1 sparse models and lack spatial adaption and principled fashion. In this paper, we propose a novel GSR model calling simultaneous sparse Bayesian coding (SSBC) model. In this model, the shared scaling variables in patch group are first learned by the empirical Bayesian strategy. Based on the learned scaling variables, the sparse coefficients can be efficiently solved by the posterior means of the coefficients. We further generalize this model to process general IR tasks with the alternating direction method of multipliers (ADMM) techniques. Extensive experiments on image denoising, inpainting, deblurring and single image super-resolution demonstrate that the proposed method achieves notable objective and subjective improvements over many state-of-the-art restored methods." @default.
- W2895061394 created "2018-10-12" @default.
- W2895061394 creator A5049639221 @default.
- W2895061394 creator A5057815762 @default.
- W2895061394 date "2019-02-01" @default.
- W2895061394 modified "2023-10-02" @default.
- W2895061394 title "ADMM for image restoration based on nonlocal simultaneous sparse Bayesian coding" @default.
- W2895061394 cites W1906770428 @default.
- W2895061394 cites W195665135 @default.
- W2895061394 cites W1973215395 @default.
- W2895061394 cites W1978749115 @default.
- W2895061394 cites W1991174941 @default.
- W2895061394 cites W2006262236 @default.
- W2895061394 cites W2014311222 @default.
- W2895061394 cites W2029684123 @default.
- W2895061394 cites W2042984553 @default.
- W2895061394 cites W2045737896 @default.
- W2895061394 cites W2045849979 @default.
- W2895061394 cites W2050630265 @default.
- W2895061394 cites W2056370875 @default.
- W2895061394 cites W2061800457 @default.
- W2895061394 cites W2078146345 @default.
- W2895061394 cites W2078204800 @default.
- W2895061394 cites W2085692415 @default.
- W2895061394 cites W2086670019 @default.
- W2895061394 cites W2086962710 @default.
- W2895061394 cites W2087416986 @default.
- W2895061394 cites W2091494211 @default.
- W2895061394 cites W2097073572 @default.
- W2895061394 cites W2103559027 @default.
- W2895061394 cites W2103972604 @default.
- W2895061394 cites W2107861471 @default.
- W2895061394 cites W2109240917 @default.
- W2895061394 cites W2111557737 @default.
- W2895061394 cites W2112545418 @default.
- W2895061394 cites W2113945798 @default.
- W2895061394 cites W2114122776 @default.
- W2895061394 cites W2121058967 @default.
- W2895061394 cites W2125527601 @default.
- W2895061394 cites W2126922884 @default.
- W2895061394 cites W2127271355 @default.
- W2895061394 cites W2127870457 @default.
- W2895061394 cites W2131120753 @default.
- W2895061394 cites W2132680427 @default.
- W2895061394 cites W2133665775 @default.
- W2895061394 cites W2140050933 @default.
- W2895061394 cites W2142058898 @default.
- W2895061394 cites W2142224912 @default.
- W2895061394 cites W2146842127 @default.
- W2895061394 cites W2152279006 @default.
- W2895061394 cites W2153663612 @default.
- W2895061394 cites W2160924560 @default.
- W2895061394 cites W2167307343 @default.
- W2895061394 cites W2168745297 @default.
- W2895061394 cites W2198155329 @default.
- W2895061394 cites W2505029951 @default.
- W2895061394 cites W2512704900 @default.
- W2895061394 cites W2519691482 @default.
- W2895061394 cites W2527004316 @default.
- W2895061394 cites W2536599074 @default.
- W2895061394 cites W2573726823 @default.
- W2895061394 cites W2593128366 @default.
- W2895061394 cites W2613155248 @default.
- W2895061394 cites W2628520183 @default.
- W2895061394 cites W2767380400 @default.
- W2895061394 cites W2963676935 @default.
- W2895061394 cites W2963689682 @default.
- W2895061394 cites W2963814976 @default.
- W2895061394 cites W2964261957 @default.
- W2895061394 cites W3100203369 @default.
- W2895061394 cites W3123837026 @default.
- W2895061394 cites W4206310440 @default.
- W2895061394 doi "https://doi.org/10.1016/j.image.2018.09.012" @default.
- W2895061394 hasPublicationYear "2019" @default.
- W2895061394 type Work @default.
- W2895061394 sameAs 2895061394 @default.
- W2895061394 citedByCount "9" @default.
- W2895061394 countsByYear W28950613942019 @default.
- W2895061394 countsByYear W28950613942020 @default.
- W2895061394 countsByYear W28950613942021 @default.
- W2895061394 countsByYear W28950613942022 @default.
- W2895061394 countsByYear W28950613942023 @default.
- W2895061394 crossrefType "journal-article" @default.
- W2895061394 hasAuthorship W2895061394A5049639221 @default.
- W2895061394 hasAuthorship W2895061394A5057815762 @default.
- W2895061394 hasConcept C106430172 @default.
- W2895061394 hasConcept C107673813 @default.
- W2895061394 hasConcept C11413529 @default.
- W2895061394 hasConcept C115961682 @default.
- W2895061394 hasConcept C11727466 @default.
- W2895061394 hasConcept C124066611 @default.
- W2895061394 hasConcept C153180895 @default.
- W2895061394 hasConcept C154945302 @default.
- W2895061394 hasConcept C160234255 @default.
- W2895061394 hasConcept C2524010 @default.
- W2895061394 hasConcept C2777693668 @default.
- W2895061394 hasConcept C33923547 @default.
- W2895061394 hasConcept C41008148 @default.