Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895063672> ?p ?o ?g. }
- W2895063672 endingPage "34" @default.
- W2895063672 startingPage "23" @default.
- W2895063672 abstract "ABSTRACT In an effort to develop quantitative biomarkers for degenerative joint disease and fill the void that exists for diagnosing, monitoring, and assessing the extent of whole joint degeneration, the past decade has been marked by a greatly increased role of noninvasive imaging. This coupled with recent advances in image processing and deep learning opens new possibilities for promising quantitative techniques. The clinical translation of quantitative imaging was previously hampered by tedious non‐scalable and subjective image analysis. Osteoarthritis (OA) diagnosis using X‐rays can be automated by the use of deep learning models and pilot studies showed feasibility of using similar techniques to reliably segment multiple musculoskeletal tissues and detect and stage the severity of morphological abnormalities in magnetic resonance imaging (MRI). Automation and more advanced feature extraction techniques have applications on larger more heterogeneous samples. Analyses based on voxel based relaxometry have shown local patterns in relaxation time elevations and local correlations with outcome variables. Bone cartilage interactions are also enhanced by the analysis of three‐dimensional bone morphology and the potential for the assessment of metabolic activity with simultaneous Positron Emission Tomography (PET)/MR systems. Novel techniques in image processing and deep learning are augmenting imaging to be a source of quantitative and reliable data and new multidimensional analytics allow us to exploit the interactions of data from various sources. In this review, we aim to summarize recent advances in quantitative imaging, the application of image processing and deep learning techniques to study knee and hip OA. ©2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res XX:XX–XX, 2018." @default.
- W2895063672 created "2018-10-12" @default.
- W2895063672 creator A5006203153 @default.
- W2895063672 creator A5043462798 @default.
- W2895063672 date "2018-10-29" @default.
- W2895063672 modified "2023-10-16" @default.
- W2895063672 title "Translation of morphological and functional musculoskeletal imaging" @default.
- W2895063672 cites W1766748276 @default.
- W2895063672 cites W1828697965 @default.
- W2895063672 cites W1866312070 @default.
- W2895063672 cites W1890717298 @default.
- W2895063672 cites W1901121066 @default.
- W2895063672 cites W1901129140 @default.
- W2895063672 cites W1967057044 @default.
- W2895063672 cites W1968806646 @default.
- W2895063672 cites W1970522776 @default.
- W2895063672 cites W1974759500 @default.
- W2895063672 cites W1980837653 @default.
- W2895063672 cites W1985940603 @default.
- W2895063672 cites W1987537066 @default.
- W2895063672 cites W1989757660 @default.
- W2895063672 cites W1993883904 @default.
- W2895063672 cites W1997637714 @default.
- W2895063672 cites W1998470513 @default.
- W2895063672 cites W2002356290 @default.
- W2895063672 cites W2018495370 @default.
- W2895063672 cites W2021338453 @default.
- W2895063672 cites W2027046423 @default.
- W2895063672 cites W2031052983 @default.
- W2895063672 cites W2034251536 @default.
- W2895063672 cites W2037168858 @default.
- W2895063672 cites W2038220413 @default.
- W2895063672 cites W2043591149 @default.
- W2895063672 cites W2043834774 @default.
- W2895063672 cites W2056449719 @default.
- W2895063672 cites W2057315920 @default.
- W2895063672 cites W2060863323 @default.
- W2895063672 cites W2072360751 @default.
- W2895063672 cites W2082383827 @default.
- W2895063672 cites W2082771892 @default.
- W2895063672 cites W2086713228 @default.
- W2895063672 cites W2087719466 @default.
- W2895063672 cites W2088443665 @default.
- W2895063672 cites W2089241101 @default.
- W2895063672 cites W2096983207 @default.
- W2895063672 cites W2101331315 @default.
- W2895063672 cites W2108740605 @default.
- W2895063672 cites W2113670619 @default.
- W2895063672 cites W2116177429 @default.
- W2895063672 cites W2133915381 @default.
- W2895063672 cites W2135098161 @default.
- W2895063672 cites W2156943449 @default.
- W2895063672 cites W2158424582 @default.
- W2895063672 cites W2161540539 @default.
- W2895063672 cites W2172162718 @default.
- W2895063672 cites W2187638581 @default.
- W2895063672 cites W2200316193 @default.
- W2895063672 cites W2253579545 @default.
- W2895063672 cites W2261714614 @default.
- W2895063672 cites W2268101274 @default.
- W2895063672 cites W2289006448 @default.
- W2895063672 cites W2292819679 @default.
- W2895063672 cites W2339409315 @default.
- W2895063672 cites W2346502876 @default.
- W2895063672 cites W2396436238 @default.
- W2895063672 cites W2466868728 @default.
- W2895063672 cites W2503369221 @default.
- W2895063672 cites W2508185194 @default.
- W2895063672 cites W2510172416 @default.
- W2895063672 cites W2513982681 @default.
- W2895063672 cites W2519415140 @default.
- W2895063672 cites W2522849079 @default.
- W2895063672 cites W2546830251 @default.
- W2895063672 cites W2555553162 @default.
- W2895063672 cites W2563992407 @default.
- W2895063672 cites W2567870524 @default.
- W2895063672 cites W2569698081 @default.
- W2895063672 cites W2571037140 @default.
- W2895063672 cites W2609680256 @default.
- W2895063672 cites W2611499204 @default.
- W2895063672 cites W2737373222 @default.
- W2895063672 cites W2739841054 @default.
- W2895063672 cites W2783960414 @default.
- W2895063672 cites W2794613614 @default.
- W2895063672 cites W2794990008 @default.
- W2895063672 cites W2797887052 @default.
- W2895063672 cites W2801452581 @default.
- W2895063672 cites W2801586841 @default.
- W2895063672 cites W2802828138 @default.
- W2895063672 cites W2810567601 @default.
- W2895063672 cites W2811082420 @default.
- W2895063672 cites W2885303411 @default.
- W2895063672 cites W2897451575 @default.
- W2895063672 cites W2897454585 @default.
- W2895063672 cites W2951965145 @default.
- W2895063672 cites W2963202012 @default.
- W2895063672 doi "https://doi.org/10.1002/jor.24151" @default.
- W2895063672 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30273968" @default.