Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895063750> ?p ?o ?g. }
- W2895063750 endingPage "913" @default.
- W2895063750 startingPage "898" @default.
- W2895063750 abstract "Abstract Most deep learning models such as stacked autoencoder (SAE) and stacked denoising autoencoder (SDAE) are used for fault diagnosis with a data label. These models are applied to extract the useful features with several hidden layers, then a classifier is used to complete the fault diagnosis. However, these fault diagnosis classification methods are only suitable for tagged datasets. Actually, many datasets are untagged in practical engineering. The clustering method can classify data without a label. Therefore, a method based on the SDAE and Gath–Geva (GG) clustering algorithm for roller bearing fault diagnosis without a data label is proposed in this study. First, SDAE is selected to extract the useful feature and reduce the dimension of the vibration signal to two or three dimensions direct without principal component analysis (PCA) of the final hidden layer. Then GG is deployed to identify the different faults. To demonstrate that the feature extraction performance of the SDAE is better than that of the SAE and EEMD with the FE model, the PCA is selected to reduce the dimension of eigenvectors obtained from several previously hidden layers, except for the final hidden layer. Compared with SAE and ensemble empirical mode decomposition (EEMD)-fuzzy entropy (FE) models, the results show that as the number of the hidden layers increases, all the fault samples under different conditions are separated better by using SDAE rather than those feature extraction models mentioned. In addition, three evaluation indicators such as PC, CE, and classification accuracy are used to assess the performance of the method presented. Finally, the results show that the clustering effect of the method presented, and its classification accuracy are superior to those of the other combination models, including the SAE-fuzzy C-means (FCM)/Gustafson–Kessel (GK)/GG and EEMD-fuzzy entropy FE-PCA-FCM/GK/GG." @default.
- W2895063750 created "2018-10-12" @default.
- W2895063750 creator A5020530677 @default.
- W2895063750 creator A5040464728 @default.
- W2895063750 creator A5044184865 @default.
- W2895063750 date "2018-12-01" @default.
- W2895063750 modified "2023-10-01" @default.
- W2895063750 title "Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath–Geva clustering algorithm without principal component analysis and data label" @default.
- W2895063750 cites W1967352108 @default.
- W2895063750 cites W1977593400 @default.
- W2895063750 cites W1985473611 @default.
- W2895063750 cites W1987801991 @default.
- W2895063750 cites W2006803905 @default.
- W2895063750 cites W2007221293 @default.
- W2895063750 cites W2012485971 @default.
- W2895063750 cites W2016296835 @default.
- W2895063750 cites W2022243308 @default.
- W2895063750 cites W2025768430 @default.
- W2895063750 cites W2057577134 @default.
- W2895063750 cites W2077204677 @default.
- W2895063750 cites W2078366715 @default.
- W2895063750 cites W2085667878 @default.
- W2895063750 cites W2086315826 @default.
- W2895063750 cites W2094510831 @default.
- W2895063750 cites W2120390927 @default.
- W2895063750 cites W2127516119 @default.
- W2895063750 cites W2142246849 @default.
- W2895063750 cites W2155464739 @default.
- W2895063750 cites W2350011080 @default.
- W2895063750 cites W2601590138 @default.
- W2895063750 cites W2718399332 @default.
- W2895063750 cites W2737079090 @default.
- W2895063750 cites W2737897717 @default.
- W2895063750 cites W2809932396 @default.
- W2895063750 cites W2887544233 @default.
- W2895063750 cites W2952116256 @default.
- W2895063750 doi "https://doi.org/10.1016/j.asoc.2018.09.037" @default.
- W2895063750 hasPublicationYear "2018" @default.
- W2895063750 type Work @default.
- W2895063750 sameAs 2895063750 @default.
- W2895063750 citedByCount "65" @default.
- W2895063750 countsByYear W28950637502019 @default.
- W2895063750 countsByYear W28950637502020 @default.
- W2895063750 countsByYear W28950637502021 @default.
- W2895063750 countsByYear W28950637502022 @default.
- W2895063750 countsByYear W28950637502023 @default.
- W2895063750 crossrefType "journal-article" @default.
- W2895063750 hasAuthorship W2895063750A5020530677 @default.
- W2895063750 hasAuthorship W2895063750A5040464728 @default.
- W2895063750 hasAuthorship W2895063750A5044184865 @default.
- W2895063750 hasConcept C101738243 @default.
- W2895063750 hasConcept C108583219 @default.
- W2895063750 hasConcept C11413529 @default.
- W2895063750 hasConcept C121332964 @default.
- W2895063750 hasConcept C127313418 @default.
- W2895063750 hasConcept C153180895 @default.
- W2895063750 hasConcept C154945302 @default.
- W2895063750 hasConcept C163294075 @default.
- W2895063750 hasConcept C165205528 @default.
- W2895063750 hasConcept C168167062 @default.
- W2895063750 hasConcept C175551986 @default.
- W2895063750 hasConcept C199978012 @default.
- W2895063750 hasConcept C27438332 @default.
- W2895063750 hasConcept C41008148 @default.
- W2895063750 hasConcept C73555534 @default.
- W2895063750 hasConcept C97355855 @default.
- W2895063750 hasConceptScore W2895063750C101738243 @default.
- W2895063750 hasConceptScore W2895063750C108583219 @default.
- W2895063750 hasConceptScore W2895063750C11413529 @default.
- W2895063750 hasConceptScore W2895063750C121332964 @default.
- W2895063750 hasConceptScore W2895063750C127313418 @default.
- W2895063750 hasConceptScore W2895063750C153180895 @default.
- W2895063750 hasConceptScore W2895063750C154945302 @default.
- W2895063750 hasConceptScore W2895063750C163294075 @default.
- W2895063750 hasConceptScore W2895063750C165205528 @default.
- W2895063750 hasConceptScore W2895063750C168167062 @default.
- W2895063750 hasConceptScore W2895063750C175551986 @default.
- W2895063750 hasConceptScore W2895063750C199978012 @default.
- W2895063750 hasConceptScore W2895063750C27438332 @default.
- W2895063750 hasConceptScore W2895063750C41008148 @default.
- W2895063750 hasConceptScore W2895063750C73555534 @default.
- W2895063750 hasConceptScore W2895063750C97355855 @default.
- W2895063750 hasFunder F4320321592 @default.
- W2895063750 hasLocation W28950637501 @default.
- W2895063750 hasOpenAccess W2895063750 @default.
- W2895063750 hasPrimaryLocation W28950637501 @default.
- W2895063750 hasRelatedWork W2669956259 @default.
- W2895063750 hasRelatedWork W2886755908 @default.
- W2895063750 hasRelatedWork W2897995864 @default.
- W2895063750 hasRelatedWork W2939353110 @default.
- W2895063750 hasRelatedWork W2963510064 @default.
- W2895063750 hasRelatedWork W2998168123 @default.
- W2895063750 hasRelatedWork W3165463024 @default.
- W2895063750 hasRelatedWork W4211209597 @default.
- W2895063750 hasRelatedWork W4224044423 @default.
- W2895063750 hasRelatedWork W4287995534 @default.
- W2895063750 hasVolume "73" @default.
- W2895063750 isParatext "false" @default.