Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895067255> ?p ?o ?g. }
- W2895067255 endingPage "181" @default.
- W2895067255 startingPage "161" @default.
- W2895067255 abstract "Context: Software defect number prediction (SDNP) can rank the program modules according to the prediction results and is helpful for the optimization of testing resource allocation. Objective: In previous studies, supervised methods vs unsupervised methods is an active issue for just-in-time defect prediction and file-level defect prediction based on effort-aware performance measures. However, this issue has not been investigated for SDNP. To the best of our knowledge, we are the first to make a thorough comparison for these two different types of methods. Method: In our empirical studies, we consider 7 real open-source projects with 24 versions in total, use FPA and Kendall as our effort-aware performance measures, and consider three different performance evaluation scenarios (i.e., within-version scenario, cross-version scenario, and cross-project scenario). Result: We first identify two unsupervised methods with best performance. These two methods simply rank modules according to the value of metric LOC and metric RFC from large to small respectively. Then we compare 9 state-of-the-art supervised methods incorporating SMOTEND, which is used for handling class imbalance problem, with the unsupervised method based on LOC metric (i.e., LOC_D method). Final results show that LOC_D method can perform significantly better than or the same as these supervised methods. Later motivated by a recent study conducted by Agrawla and Menzies, we apply differential evolutionary (DE) to optimize parameter value of SMOTEND used by these supervised methods and find that using DE can effectively improve the performance of these supervised methods for SDNP too. Finally, we continue to compare LOC_D with these optimized supervised methods using DE, and LOC_D method still has advantages in the performance, especially in the cross-version and cross-project scenarios. Conclusion: Based on these results, we suggest that researchers need to use the unsupervised method LOC_D as the baseline method, which is used for comparing their proposed novel methods for SDNP problem in the future." @default.
- W2895067255 created "2018-10-12" @default.
- W2895067255 creator A5005128136 @default.
- W2895067255 creator A5055882947 @default.
- W2895067255 creator A5066596896 @default.
- W2895067255 creator A5071655887 @default.
- W2895067255 creator A5089420241 @default.
- W2895067255 date "2019-02-01" @default.
- W2895067255 modified "2023-10-15" @default.
- W2895067255 title "Software defect number prediction: Unsupervised vs supervised methods" @default.
- W2895067255 cites W1595159159 @default.
- W2895067255 cites W1961761736 @default.
- W2895067255 cites W1985514943 @default.
- W2895067255 cites W2018061754 @default.
- W2895067255 cites W2021509116 @default.
- W2895067255 cites W2024209326 @default.
- W2895067255 cites W2048456683 @default.
- W2895067255 cites W2099919734 @default.
- W2895067255 cites W2101227285 @default.
- W2895067255 cites W2104329051 @default.
- W2895067255 cites W2118978333 @default.
- W2895067255 cites W2120457925 @default.
- W2895067255 cites W2143637886 @default.
- W2895067255 cites W2146474553 @default.
- W2895067255 cites W2147105902 @default.
- W2895067255 cites W2147386665 @default.
- W2895067255 cites W2148143831 @default.
- W2895067255 cites W2151666086 @default.
- W2895067255 cites W2159610968 @default.
- W2895067255 cites W2160988203 @default.
- W2895067255 cites W2295673959 @default.
- W2895067255 cites W2296517388 @default.
- W2895067255 cites W2302881059 @default.
- W2895067255 cites W2344072768 @default.
- W2895067255 cites W2497047467 @default.
- W2895067255 cites W2523268328 @default.
- W2895067255 cites W2567530267 @default.
- W2895067255 cites W2605932792 @default.
- W2895067255 cites W2729231325 @default.
- W2895067255 cites W2744611928 @default.
- W2895067255 cites W2766521509 @default.
- W2895067255 cites W2772246504 @default.
- W2895067255 cites W2963548617 @default.
- W2895067255 doi "https://doi.org/10.1016/j.infsof.2018.10.003" @default.
- W2895067255 hasPublicationYear "2019" @default.
- W2895067255 type Work @default.
- W2895067255 sameAs 2895067255 @default.
- W2895067255 citedByCount "63" @default.
- W2895067255 countsByYear W28950672552019 @default.
- W2895067255 countsByYear W28950672552020 @default.
- W2895067255 countsByYear W28950672552021 @default.
- W2895067255 countsByYear W28950672552022 @default.
- W2895067255 countsByYear W28950672552023 @default.
- W2895067255 crossrefType "journal-article" @default.
- W2895067255 hasAuthorship W2895067255A5005128136 @default.
- W2895067255 hasAuthorship W2895067255A5055882947 @default.
- W2895067255 hasAuthorship W2895067255A5066596896 @default.
- W2895067255 hasAuthorship W2895067255A5071655887 @default.
- W2895067255 hasAuthorship W2895067255A5089420241 @default.
- W2895067255 hasConcept C114614502 @default.
- W2895067255 hasConcept C117447612 @default.
- W2895067255 hasConcept C119857082 @default.
- W2895067255 hasConcept C124101348 @default.
- W2895067255 hasConcept C127413603 @default.
- W2895067255 hasConcept C151730666 @default.
- W2895067255 hasConcept C154945302 @default.
- W2895067255 hasConcept C162324750 @default.
- W2895067255 hasConcept C164226766 @default.
- W2895067255 hasConcept C176217482 @default.
- W2895067255 hasConcept C187736073 @default.
- W2895067255 hasConcept C199360897 @default.
- W2895067255 hasConcept C21547014 @default.
- W2895067255 hasConcept C2777904410 @default.
- W2895067255 hasConcept C2779343474 @default.
- W2895067255 hasConcept C2780898871 @default.
- W2895067255 hasConcept C33923547 @default.
- W2895067255 hasConcept C41008148 @default.
- W2895067255 hasConcept C529173508 @default.
- W2895067255 hasConcept C82214349 @default.
- W2895067255 hasConcept C86803240 @default.
- W2895067255 hasConceptScore W2895067255C114614502 @default.
- W2895067255 hasConceptScore W2895067255C117447612 @default.
- W2895067255 hasConceptScore W2895067255C119857082 @default.
- W2895067255 hasConceptScore W2895067255C124101348 @default.
- W2895067255 hasConceptScore W2895067255C127413603 @default.
- W2895067255 hasConceptScore W2895067255C151730666 @default.
- W2895067255 hasConceptScore W2895067255C154945302 @default.
- W2895067255 hasConceptScore W2895067255C162324750 @default.
- W2895067255 hasConceptScore W2895067255C164226766 @default.
- W2895067255 hasConceptScore W2895067255C176217482 @default.
- W2895067255 hasConceptScore W2895067255C187736073 @default.
- W2895067255 hasConceptScore W2895067255C199360897 @default.
- W2895067255 hasConceptScore W2895067255C21547014 @default.
- W2895067255 hasConceptScore W2895067255C2777904410 @default.
- W2895067255 hasConceptScore W2895067255C2779343474 @default.
- W2895067255 hasConceptScore W2895067255C2780898871 @default.
- W2895067255 hasConceptScore W2895067255C33923547 @default.
- W2895067255 hasConceptScore W2895067255C41008148 @default.