Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895081882> ?p ?o ?g. }
- W2895081882 endingPage "119" @default.
- W2895081882 startingPage "110" @default.
- W2895081882 abstract "This study aimed to investigate the potential of lecithin-based nanoemulsions costabilized by sucrose esters, with and without skin pretreatment with stainless steel microneedles, to improve delivery of aceclofenac, as a model drug, into/across the skin. The characterization revealed favorable droplet size (about 180 nm), narrow size distribution (<0.15), high surface charge (about −40 mV) and satisfying long-term stability (one year at 4 ± 1 °C) of the formulation costabilized by sucrose palmitate, demonstrating a similar trend observed for the reference stabilized by widely used lecithin/polysorbate 80 combination. In vitro release/permeation testing and differential stripping on the porcine ear proved the superiority of the sucrose ester- over polysorbate-based nanoemulsion. However, in vitro findings were not fully indicative of the in vivo performances – no significant differences were observed between investigated formulations in pharmacokinetic profile and total amount of aceclofenac deposited in the rat skin 24 h after dosing, simultaneously pointing to delayed aceclofenac delivery into the systemic circulation. In addition, the ratio of plasma concentrations of aceclofenac and its major metabolite in rats, diclofenac, was remarkably changed after topical application of tested nanoemulsions compared to intravenous administration of aceclofenac solution. Finally, skin pretreatment with microneedles improved aceclofenac delivery into/across the rat skin from tested formulations, resulting in 1.4–2.1-fold increased bioavailability and 1.2–1.7-fold enhanced level of aceclofenac retained in the skin, as measured 24 h after administration. Moreover, the plasma concentrations of aceclofenac 24 h after application of tested formulations (lecithin/sucrose palmitate vs. lecithin/polysorbate 80) combined with microneedles (173.37 ± 40.50 ng/ml vs. 259.23 ± 73.18 ng/ml) were significantly higher than those obtained through intact skin (105.69 ± 19.53 ng/ml vs. 88.38 ± 14.46 ng/ml). However, obtained results suggest that combination of microneedles and sucrose palmitate-costabilized nanoemulsion could be useful to attain higher skin concentration, while combination of microneedles with polysorbate 80-costabilized nanoemulsion could be a preferable option for enhancing drug delivery into the bloodstream." @default.
- W2895081882 created "2018-10-12" @default.
- W2895081882 creator A5013843920 @default.
- W2895081882 creator A5015529410 @default.
- W2895081882 creator A5035932424 @default.
- W2895081882 creator A5044377626 @default.
- W2895081882 creator A5053360977 @default.
- W2895081882 creator A5054285602 @default.
- W2895081882 creator A5078756600 @default.
- W2895081882 creator A5083786393 @default.
- W2895081882 date "2018-12-01" @default.
- W2895081882 modified "2023-10-16" @default.
- W2895081882 title "Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies" @default.
- W2895081882 cites W1881834787 @default.
- W2895081882 cites W1964501217 @default.
- W2895081882 cites W1965397793 @default.
- W2895081882 cites W1988661248 @default.
- W2895081882 cites W1993061546 @default.
- W2895081882 cites W1993356346 @default.
- W2895081882 cites W1996984925 @default.
- W2895081882 cites W2001293346 @default.
- W2895081882 cites W2007539416 @default.
- W2895081882 cites W2017106076 @default.
- W2895081882 cites W2022154646 @default.
- W2895081882 cites W2025634946 @default.
- W2895081882 cites W2029455556 @default.
- W2895081882 cites W2043055312 @default.
- W2895081882 cites W2045830660 @default.
- W2895081882 cites W2048072806 @default.
- W2895081882 cites W2051292995 @default.
- W2895081882 cites W2052149520 @default.
- W2895081882 cites W2052670859 @default.
- W2895081882 cites W2057001286 @default.
- W2895081882 cites W2061113234 @default.
- W2895081882 cites W2085162634 @default.
- W2895081882 cites W2086213833 @default.
- W2895081882 cites W2089015696 @default.
- W2895081882 cites W2103359736 @default.
- W2895081882 cites W2131447732 @default.
- W2895081882 cites W2135727032 @default.
- W2895081882 cites W2135966909 @default.
- W2895081882 cites W2141517515 @default.
- W2895081882 cites W2142556382 @default.
- W2895081882 cites W2199766511 @default.
- W2895081882 cites W2275002695 @default.
- W2895081882 cites W2593053298 @default.
- W2895081882 cites W792231947 @default.
- W2895081882 doi "https://doi.org/10.1016/j.ejps.2018.09.023" @default.
- W2895081882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30287408" @default.
- W2895081882 hasPublicationYear "2018" @default.
- W2895081882 type Work @default.
- W2895081882 sameAs 2895081882 @default.
- W2895081882 citedByCount "23" @default.
- W2895081882 countsByYear W28950818822019 @default.
- W2895081882 countsByYear W28950818822020 @default.
- W2895081882 countsByYear W28950818822021 @default.
- W2895081882 countsByYear W28950818822022 @default.
- W2895081882 countsByYear W28950818822023 @default.
- W2895081882 crossrefType "journal-article" @default.
- W2895081882 hasAuthorship W2895081882A5013843920 @default.
- W2895081882 hasAuthorship W2895081882A5015529410 @default.
- W2895081882 hasAuthorship W2895081882A5035932424 @default.
- W2895081882 hasAuthorship W2895081882A5044377626 @default.
- W2895081882 hasAuthorship W2895081882A5053360977 @default.
- W2895081882 hasAuthorship W2895081882A5054285602 @default.
- W2895081882 hasAuthorship W2895081882A5078756600 @default.
- W2895081882 hasAuthorship W2895081882A5083786393 @default.
- W2895081882 hasConcept C112705442 @default.
- W2895081882 hasConcept C150903083 @default.
- W2895081882 hasConcept C178790620 @default.
- W2895081882 hasConcept C181389837 @default.
- W2895081882 hasConcept C185592680 @default.
- W2895081882 hasConcept C205679159 @default.
- W2895081882 hasConcept C207001950 @default.
- W2895081882 hasConcept C2777897440 @default.
- W2895081882 hasConcept C2778551929 @default.
- W2895081882 hasConcept C2779564620 @default.
- W2895081882 hasConcept C2779820397 @default.
- W2895081882 hasConcept C2780976021 @default.
- W2895081882 hasConcept C41625074 @default.
- W2895081882 hasConcept C43617362 @default.
- W2895081882 hasConcept C50670333 @default.
- W2895081882 hasConcept C55493867 @default.
- W2895081882 hasConcept C58226133 @default.
- W2895081882 hasConcept C71924100 @default.
- W2895081882 hasConcept C86803240 @default.
- W2895081882 hasConcept C98274493 @default.
- W2895081882 hasConceptScore W2895081882C112705442 @default.
- W2895081882 hasConceptScore W2895081882C150903083 @default.
- W2895081882 hasConceptScore W2895081882C178790620 @default.
- W2895081882 hasConceptScore W2895081882C181389837 @default.
- W2895081882 hasConceptScore W2895081882C185592680 @default.
- W2895081882 hasConceptScore W2895081882C205679159 @default.
- W2895081882 hasConceptScore W2895081882C207001950 @default.
- W2895081882 hasConceptScore W2895081882C2777897440 @default.
- W2895081882 hasConceptScore W2895081882C2778551929 @default.
- W2895081882 hasConceptScore W2895081882C2779564620 @default.
- W2895081882 hasConceptScore W2895081882C2779820397 @default.