Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895088971> ?p ?o ?g. }
- W2895088971 endingPage "1648" @default.
- W2895088971 startingPage "1634" @default.
- W2895088971 abstract "The role of fluid(s) in the formation of different lithological facies of kimberlites is still poorly understood. The uncertainty in the composition of kimberlite melts hampers understanding the composition of volatiles, the depth of exsolution, and the effect on magma ascent and fragmentation. Recent estimates of H2O and CO2 solubility in kimberlite-like magmas suggest very shallow exsolution of fluid, while many features of kimberlites indicate the presence of significant fluid fraction at depth. Deep magmatic fluid produces negative trigonal etch pits on natural diamonds, the characteristics of which depend on the temperature and composition of the fluid. Positively oriented trigonal etch pits are very rare on natural diamonds and are likely a feature of resorption events unique to only some kimberlite magmas. Here we present the first systematic study of positively oriented trigonal etch pits on natural diamonds from Snap Lake kimberlite dike, Northwest Territories, Canada. The study used 91 micro-diamonds selected from a population of 251 diamonds representative of all six kimberlite litho-facies identified in the Snap Lake dike. We established that unlike the majority of diamonds from kimberlite pipes in the Northwest Territories, every studied Snap Lake diamond shows positively oriented trigons. These trigons cover the whole diamond surface starting from the {111} faces and continuing over the resorbed edges. They overprint negatively oriented trigons and modify them into hexagons. Atomic force microscopy obtained detailed geometry of 154 positive trigons on 14 diamonds. Three distinct trigon morphologies dependent on the type of the crystal lattice defect were recognized. The point-bottomed shape and positive correlation between the depth and diameter of the individual pits suggest a high CO2 content in the fluid. Comparison with the existing experimental data on positive trigons implies resorption at low-pressure conditions in the 800–1000 °C temperature range by trapped magmatic fluid after the dike emplacement. The intensity of this late resorption event (and the size of the positive trigons) increases from the dike contact with the country rock into the interior of the dike. Such a late resorption event is absent in the majority of kimberlites, which form pipes, and might be a specific feature of hypabyssal kimberlite bodies (dikes). The absence of positive trigons on diamonds from the majority of kimberlites suggests very quick magma cooling below ~800 °C after the pipe emplacement, precluding the development of any late resorption features. Our study shows that for kimberlitic magmas, for which mineral chemistry is unable to provide a robust record of magmatic fluid, morphological details of dissolution features on the surface of diamond and other mantle-derived minerals can serve as a fluid proxy. Better constraints of the pressure, temperature, and oxygen fugacity of the reversal in the trigon orientation on diamond may help to reconstruct the emplacement path of geologically diverse kimberlite bodies." @default.
- W2895088971 created "2018-10-12" @default.
- W2895088971 creator A5008334448 @default.
- W2895088971 creator A5033374865 @default.
- W2895088971 creator A5054698024 @default.
- W2895088971 creator A5056888246 @default.
- W2895088971 creator A5062759127 @default.
- W2895088971 date "2018-10-01" @default.
- W2895088971 modified "2023-10-01" @default.
- W2895088971 title "Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: Implications for fluids and kimberlite cooling rates" @default.
- W2895088971 cites W1749626140 @default.
- W2895088971 cites W1963715522 @default.
- W2895088971 cites W1986230641 @default.
- W2895088971 cites W1991965950 @default.
- W2895088971 cites W1992007428 @default.
- W2895088971 cites W2004891928 @default.
- W2895088971 cites W2007593832 @default.
- W2895088971 cites W2010026423 @default.
- W2895088971 cites W2017590784 @default.
- W2895088971 cites W2018490895 @default.
- W2895088971 cites W2020926877 @default.
- W2895088971 cites W2024110734 @default.
- W2895088971 cites W2027047449 @default.
- W2895088971 cites W2034315656 @default.
- W2895088971 cites W2044078195 @default.
- W2895088971 cites W2046131895 @default.
- W2895088971 cites W2054518955 @default.
- W2895088971 cites W2055042198 @default.
- W2895088971 cites W2063974184 @default.
- W2895088971 cites W2104070397 @default.
- W2895088971 cites W2108348302 @default.
- W2895088971 cites W2109509502 @default.
- W2895088971 cites W2131641070 @default.
- W2895088971 cites W2144169069 @default.
- W2895088971 cites W2161457782 @default.
- W2895088971 cites W2163802254 @default.
- W2895088971 cites W2318295706 @default.
- W2895088971 cites W2327313516 @default.
- W2895088971 cites W2473085561 @default.
- W2895088971 cites W2742389431 @default.
- W2895088971 doi "https://doi.org/10.2138/am-2018-6496" @default.
- W2895088971 hasPublicationYear "2018" @default.
- W2895088971 type Work @default.
- W2895088971 sameAs 2895088971 @default.
- W2895088971 citedByCount "8" @default.
- W2895088971 countsByYear W28950889712019 @default.
- W2895088971 countsByYear W28950889712021 @default.
- W2895088971 countsByYear W28950889712022 @default.
- W2895088971 countsByYear W28950889712023 @default.
- W2895088971 crossrefType "journal-article" @default.
- W2895088971 hasAuthorship W2895088971A5008334448 @default.
- W2895088971 hasAuthorship W2895088971A5033374865 @default.
- W2895088971 hasAuthorship W2895088971A5054698024 @default.
- W2895088971 hasAuthorship W2895088971A5056888246 @default.
- W2895088971 hasAuthorship W2895088971A5062759127 @default.
- W2895088971 hasConcept C120806208 @default.
- W2895088971 hasConcept C127313418 @default.
- W2895088971 hasConcept C17409809 @default.
- W2895088971 hasConcept C183222429 @default.
- W2895088971 hasConcept C183282558 @default.
- W2895088971 hasConcept C191897082 @default.
- W2895088971 hasConcept C192562407 @default.
- W2895088971 hasConcept C199289684 @default.
- W2895088971 hasConcept C207319327 @default.
- W2895088971 hasConcept C2776921476 @default.
- W2895088971 hasConcept C5900021 @default.
- W2895088971 hasConcept C67236022 @default.
- W2895088971 hasConcept C83893233 @default.
- W2895088971 hasConceptScore W2895088971C120806208 @default.
- W2895088971 hasConceptScore W2895088971C127313418 @default.
- W2895088971 hasConceptScore W2895088971C17409809 @default.
- W2895088971 hasConceptScore W2895088971C183222429 @default.
- W2895088971 hasConceptScore W2895088971C183282558 @default.
- W2895088971 hasConceptScore W2895088971C191897082 @default.
- W2895088971 hasConceptScore W2895088971C192562407 @default.
- W2895088971 hasConceptScore W2895088971C199289684 @default.
- W2895088971 hasConceptScore W2895088971C207319327 @default.
- W2895088971 hasConceptScore W2895088971C2776921476 @default.
- W2895088971 hasConceptScore W2895088971C5900021 @default.
- W2895088971 hasConceptScore W2895088971C67236022 @default.
- W2895088971 hasConceptScore W2895088971C83893233 @default.
- W2895088971 hasIssue "10" @default.
- W2895088971 hasLocation W28950889711 @default.
- W2895088971 hasOpenAccess W2895088971 @default.
- W2895088971 hasPrimaryLocation W28950889711 @default.
- W2895088971 hasRelatedWork W1985999581 @default.
- W2895088971 hasRelatedWork W2037797541 @default.
- W2895088971 hasRelatedWork W2057762134 @default.
- W2895088971 hasRelatedWork W2098333284 @default.
- W2895088971 hasRelatedWork W2111652594 @default.
- W2895088971 hasRelatedWork W2153266938 @default.
- W2895088971 hasRelatedWork W2187007685 @default.
- W2895088971 hasRelatedWork W2292017065 @default.
- W2895088971 hasRelatedWork W2462847736 @default.
- W2895088971 hasRelatedWork W2947233512 @default.
- W2895088971 hasVolume "103" @default.
- W2895088971 isParatext "false" @default.
- W2895088971 isRetracted "false" @default.