Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895102801> ?p ?o ?g. }
- W2895102801 endingPage "1884" @default.
- W2895102801 startingPage "1884" @default.
- W2895102801 abstract "Objectives: Resin-modified glass ionomer cements (RMGIC) are considered excellent restorative materials with unique therapeutic and anti-cariogenic activity. However, concerns exist regarding the use of polyacrylic acid as a dentine conditioner as it may influence the bonding performance of RMGIC. The aim of this study was to evaluate the effect of different protocols for cycling mechanical stress on the bond durability and interfacial ultramorphology of a modern RMGIC applied to dentine pre-treated with/without polyacrylic acid conditioner (PAA). Methods: The RMGIC was applied onto human dentine specimens prepared with silicon-carbide (SiC) abrasive paper with or without the use of a PAA conditioner. The specimens were immersed in deionised water for 24 h then divided in 3 groups. The first group was cut into matchsticks (cross-sectional area of 0.9 mm2) and tested immediately for microtensile bond strength (MTBS). The second was first subjected to load cycling (250,000 cycles; 3 Hz; 70 N) and then cut into matchsticks and tested for MTBS. The third group was subjected to load cycling (250,000 cycles; 3 Hz; 70 N), cut into matchsticks, and then immersed for 8 months storage in artificial saliva (AS); these were finally tested for MTBS. The results were analysed statistically using two-way ANOVA and the Student–Newman–Keuls test (α = 0.05). Fractographic analysis was performed using FE-SEM, while further RMCGIC-bonded dentine specimens were aged as previously described and used for interfacial ultramorphology characterisation (dye nanoleakage) using confocal microscopy. Results: The RMGIC applied onto dentine that received no pre-treatment (10% PAA gel) showed no significant reduction in MTBS after load cycling followed by 8 months of storage in AS (p > 0.05). The RMGIC–dentine interface created in PAA-conditioned SiC-abraded dentine specimens showed no sign of degradation, but with porosities within the bonding interface both after load cycling and after 8 months of storage in AS. Conversely, the RMGIC–dentine interface of the specimens with no PAA pre-treatment showed no sign of porosity within the interface after any of the aging protocols, although some bonded-dentine interfaces presented cohesive cracks within the cement after prolonged AS storage. However, the specimens of this group showed no significant reduction in bond strength (p < 0.05) after 8 months of storage in AS or load cycling (p > 0.05). After prolonged AS storage, the bond strength value attained in RMGIC–dentine specimens created in PAA pre-treated dentine were significantly higher than those observed in the specimens created with no PAA pre-treatment in dentine. Conclusions: PAA conditioning of dentine prior to application of RMGIC induces no substantial effect on the bond strength after short-term storage, but its use may increase the risk of collagen degradation at the bonding interface after prolonged aging. Modern RMGIC applied without PAA dentine pre-treatment may have greater therapeutic synergy with saliva during cycle occlusal load, thereby enhancing the remineralisation and protection of the bonding interface." @default.
- W2895102801 created "2018-10-12" @default.
- W2895102801 creator A5014510766 @default.
- W2895102801 creator A5017134164 @default.
- W2895102801 creator A5035699630 @default.
- W2895102801 creator A5058604100 @default.
- W2895102801 creator A5069641655 @default.
- W2895102801 creator A5073557561 @default.
- W2895102801 creator A5074911346 @default.
- W2895102801 date "2018-10-02" @default.
- W2895102801 modified "2023-10-01" @default.
- W2895102801 title "Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created with a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress" @default.
- W2895102801 cites W142425260 @default.
- W2895102801 cites W1504028812 @default.
- W2895102801 cites W1566429029 @default.
- W2895102801 cites W189992772 @default.
- W2895102801 cites W1965996257 @default.
- W2895102801 cites W1966786122 @default.
- W2895102801 cites W1967674780 @default.
- W2895102801 cites W1968092592 @default.
- W2895102801 cites W1973184354 @default.
- W2895102801 cites W1982365961 @default.
- W2895102801 cites W2000551102 @default.
- W2895102801 cites W2011820882 @default.
- W2895102801 cites W2011937217 @default.
- W2895102801 cites W2015711792 @default.
- W2895102801 cites W2019063405 @default.
- W2895102801 cites W2026252203 @default.
- W2895102801 cites W2038144878 @default.
- W2895102801 cites W2040385059 @default.
- W2895102801 cites W2054249900 @default.
- W2895102801 cites W2055944334 @default.
- W2895102801 cites W2084973118 @default.
- W2895102801 cites W2089380489 @default.
- W2895102801 cites W2091141086 @default.
- W2895102801 cites W2093101526 @default.
- W2895102801 cites W2107859104 @default.
- W2895102801 cites W2109894097 @default.
- W2895102801 cites W2114683488 @default.
- W2895102801 cites W2118215990 @default.
- W2895102801 cites W2121606744 @default.
- W2895102801 cites W2121681225 @default.
- W2895102801 cites W2135371413 @default.
- W2895102801 cites W2138265530 @default.
- W2895102801 cites W2138820851 @default.
- W2895102801 cites W2141998542 @default.
- W2895102801 cites W2143197012 @default.
- W2895102801 cites W2151189616 @default.
- W2895102801 cites W2159094416 @default.
- W2895102801 cites W2165198449 @default.
- W2895102801 cites W2167373232 @default.
- W2895102801 cites W2246533723 @default.
- W2895102801 cites W2415978390 @default.
- W2895102801 cites W2425002804 @default.
- W2895102801 cites W2462845945 @default.
- W2895102801 cites W2494737845 @default.
- W2895102801 cites W2617733752 @default.
- W2895102801 cites W2752465883 @default.
- W2895102801 cites W2794852705 @default.
- W2895102801 cites W2797271532 @default.
- W2895102801 cites W44345238 @default.
- W2895102801 cites W73326852 @default.
- W2895102801 doi "https://doi.org/10.3390/ma11101884" @default.
- W2895102801 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6213221" @default.
- W2895102801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30279354" @default.
- W2895102801 hasPublicationYear "2018" @default.
- W2895102801 type Work @default.
- W2895102801 sameAs 2895102801 @default.
- W2895102801 citedByCount "7" @default.
- W2895102801 countsByYear W28951028012019 @default.
- W2895102801 countsByYear W28951028012020 @default.
- W2895102801 countsByYear W28951028012021 @default.
- W2895102801 countsByYear W28951028012022 @default.
- W2895102801 crossrefType "journal-article" @default.
- W2895102801 hasAuthorship W2895102801A5014510766 @default.
- W2895102801 hasAuthorship W2895102801A5017134164 @default.
- W2895102801 hasAuthorship W2895102801A5035699630 @default.
- W2895102801 hasAuthorship W2895102801A5058604100 @default.
- W2895102801 hasAuthorship W2895102801A5069641655 @default.
- W2895102801 hasAuthorship W2895102801A5073557561 @default.
- W2895102801 hasAuthorship W2895102801A5074911346 @default.
- W2895102801 hasBestOaLocation W28951028011 @default.
- W2895102801 hasConcept C112950240 @default.
- W2895102801 hasConcept C140013486 @default.
- W2895102801 hasConcept C159096172 @default.
- W2895102801 hasConcept C159985019 @default.
- W2895102801 hasConcept C180478085 @default.
- W2895102801 hasConcept C192562407 @default.
- W2895102801 hasConcept C199343813 @default.
- W2895102801 hasConcept C2779227376 @default.
- W2895102801 hasConcept C2780312654 @default.
- W2895102801 hasConcept C2781448156 @default.
- W2895102801 hasConcept C51936186 @default.
- W2895102801 hasConcept C521977710 @default.
- W2895102801 hasConcept C523993062 @default.
- W2895102801 hasConcept C68928338 @default.
- W2895102801 hasConcept C71924100 @default.
- W2895102801 hasConceptScore W2895102801C112950240 @default.