Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895146543> ?p ?o ?g. }
- W2895146543 endingPage "2535" @default.
- W2895146543 startingPage "2535" @default.
- W2895146543 abstract "Hot spots are the subset of interface residues that account for most of the binding free energy, and they play essential roles in the stability of protein binding. Effectively identifying which specific interface residues of protein–protein complexes form the hot spots is critical for understanding the principles of protein interactions, and it has broad application prospects in protein design and drug development. Experimental methods like alanine scanning mutagenesis are labor-intensive and time-consuming. At present, the experimentally measured hot spots are very limited. Hence, the use of computational approaches to predicting hot spots is becoming increasingly important. Here, we describe the basic concepts and recent advances of machine learning applications in inferring the protein–protein interaction hot spots, and assess the performance of widely used features, machine learning algorithms, and existing state-of-the-art approaches. We also discuss the challenges and future directions in the prediction of hot spots." @default.
- W2895146543 created "2018-10-12" @default.
- W2895146543 creator A5005431252 @default.
- W2895146543 creator A5048351513 @default.
- W2895146543 creator A5085608332 @default.
- W2895146543 date "2018-10-04" @default.
- W2895146543 modified "2023-10-13" @default.
- W2895146543 title "Machine Learning Approaches for Protein–Protein Interaction Hot Spot Prediction: Progress and Comparative Assessment" @default.
- W2895146543 cites W1253096047 @default.
- W2895146543 cites W1678356000 @default.
- W2895146543 cites W1817561967 @default.
- W2895146543 cites W1985222378 @default.
- W2895146543 cites W1988790447 @default.
- W2895146543 cites W1989181256 @default.
- W2895146543 cites W1999390565 @default.
- W2895146543 cites W2002827932 @default.
- W2895146543 cites W2004360551 @default.
- W2895146543 cites W2014957977 @default.
- W2895146543 cites W2033893117 @default.
- W2895146543 cites W2039058965 @default.
- W2895146543 cites W2043338013 @default.
- W2895146543 cites W2048917743 @default.
- W2895146543 cites W2050625197 @default.
- W2895146543 cites W2058527555 @default.
- W2895146543 cites W2060610156 @default.
- W2895146543 cites W2069688347 @default.
- W2895146543 cites W2088038235 @default.
- W2895146543 cites W2088592752 @default.
- W2895146543 cites W2089468765 @default.
- W2895146543 cites W2092387745 @default.
- W2895146543 cites W2097651980 @default.
- W2895146543 cites W2098914939 @default.
- W2895146543 cites W2100908214 @default.
- W2895146543 cites W2103860090 @default.
- W2895146543 cites W2112632190 @default.
- W2895146543 cites W2115156437 @default.
- W2895146543 cites W2118187294 @default.
- W2895146543 cites W2119387367 @default.
- W2895146543 cites W2120095913 @default.
- W2895146543 cites W2122111042 @default.
- W2895146543 cites W2123009167 @default.
- W2895146543 cites W2124290836 @default.
- W2895146543 cites W2126103104 @default.
- W2895146543 cites W2129558039 @default.
- W2895146543 cites W2130670576 @default.
- W2895146543 cites W2136206140 @default.
- W2895146543 cites W2141624700 @default.
- W2895146543 cites W2143210482 @default.
- W2895146543 cites W2143426320 @default.
- W2895146543 cites W2148143831 @default.
- W2895146543 cites W2150004834 @default.
- W2895146543 cites W2150192011 @default.
- W2895146543 cites W2150381702 @default.
- W2895146543 cites W2154053567 @default.
- W2895146543 cites W2155837032 @default.
- W2895146543 cites W2156125289 @default.
- W2895146543 cites W2157735020 @default.
- W2895146543 cites W2157807259 @default.
- W2895146543 cites W2158714788 @default.
- W2895146543 cites W2162402626 @default.
- W2895146543 cites W2166186928 @default.
- W2895146543 cites W2168164063 @default.
- W2895146543 cites W2168621448 @default.
- W2895146543 cites W2290562923 @default.
- W2895146543 cites W2314868955 @default.
- W2895146543 cites W2318485605 @default.
- W2895146543 cites W2363637013 @default.
- W2895146543 cites W2427753924 @default.
- W2895146543 cites W2475686134 @default.
- W2895146543 cites W2608270353 @default.
- W2895146543 cites W2738154287 @default.
- W2895146543 cites W2739876930 @default.
- W2895146543 cites W2742299251 @default.
- W2895146543 cites W2777941847 @default.
- W2895146543 cites W2780659677 @default.
- W2895146543 cites W2783162988 @default.
- W2895146543 cites W2789316776 @default.
- W2895146543 cites W2911964244 @default.
- W2895146543 cites W4236137412 @default.
- W2895146543 cites W4239510810 @default.
- W2895146543 cites W769759530 @default.
- W2895146543 doi "https://doi.org/10.3390/molecules23102535" @default.
- W2895146543 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6222875" @default.
- W2895146543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30287797" @default.
- W2895146543 hasPublicationYear "2018" @default.
- W2895146543 type Work @default.
- W2895146543 sameAs 2895146543 @default.
- W2895146543 citedByCount "60" @default.
- W2895146543 countsByYear W28951465432019 @default.
- W2895146543 countsByYear W28951465432020 @default.
- W2895146543 countsByYear W28951465432021 @default.
- W2895146543 countsByYear W28951465432022 @default.
- W2895146543 countsByYear W28951465432023 @default.
- W2895146543 crossrefType "journal-article" @default.
- W2895146543 hasAuthorship W2895146543A5005431252 @default.
- W2895146543 hasAuthorship W2895146543A5048351513 @default.
- W2895146543 hasAuthorship W2895146543A5085608332 @default.
- W2895146543 hasBestOaLocation W28951465431 @default.