Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895162016> ?p ?o ?g. }
- W2895162016 endingPage "215006" @default.
- W2895162016 startingPage "215006" @default.
- W2895162016 abstract "Neuro-navigated procedures require a high degree of geometric accuracy but are subject to geometric error from complex deformation in the deep brain-e.g. regions about the ventricles due to egress of cerebrospinal fluid (CSF) upon neuroendoscopic approach or placement of a ventricular shunt. We report a multi-modality, diffeomorphic, deformable registration method using momentum-based acceleration of the Demons algorithm to solve the transformation relating preoperative MRI and intraoperative CT as a basis for high-precision guidance. The registration method (pMI-Demons) extends the mono-modality, diffeomorphic form of the Demons algorithm to multi-modality registration using pointwise mutual information (pMI) as a similarity metric. The method incorporates a preprocessing step to nonlinearly stretch CT image values and incorporates a momentum-based approach to accelerate convergence. Registration performance was evaluated in phantom and patient images: first, the sensitivity of performance to algorithm parameter selection (including update and displacement field smoothing, histogram stretch, and the momentum term) was analyzed in a phantom study over a range of simulated deformations; and second, the algorithm was applied to registration of MR and CT images for four patients undergoing minimally invasive neurosurgery. Performance was compared to two previously reported methods (free-form deformation using mutual information (MI-FFD) and symmetric normalization using mutual information (MI-SyN)) in terms of target registration error (TRE), Jacobian determinant (J), and runtime. The phantom study identified optimal or nominal settings of algorithm parameters for translation to clinical studies. In the phantom study, the pMI-Demons method achieved comparable registration accuracy to the reference methods and strongly reduced outliers in TRE (p [Formula: see text] 0.001 in Kolmogorov-Smirnov test). Similarly, in the clinical study: median TRE = 1.54 mm (0.83-1.66 mm interquartile range, IQR) for pMI-Demons compared to 1.40 mm (1.02-1.67 mm IQR) for MI-FFD and 1.64 mm (0.90-1.92 mm IQR) for MI-SyN. The pMI-Demons and MI-SyN methods yielded diffeomorphic transformations (J > 0) that preserved topology, whereas MI-FFD yielded unrealistic (J < 0) deformations subject to tissue folding and tearing. Momentum-based acceleration gave a ~35% speedup of the pMI-Demons method, providing registration runtime of 10.5 min (reduced to 2.2 min on GPU), compared to 15.5 min for MI-FFD and 34.7 min for MI-SyN. The pMI-Demons method achieved registration accuracy comparable to MI-FFD and MI-SyN, maintained diffeomorphic transformation similar to MI-SyN, and accelerated runtime in a manner that facilitates translation to image-guided neurosurgery." @default.
- W2895162016 created "2018-10-12" @default.
- W2895162016 creator A5009793323 @default.
- W2895162016 creator A5043560558 @default.
- W2895162016 creator A5044627248 @default.
- W2895162016 creator A5068070550 @default.
- W2895162016 creator A5089623752 @default.
- W2895162016 date "2018-10-24" @default.
- W2895162016 modified "2023-09-26" @default.
- W2895162016 title "A momentum-based diffeomorphic demons framework for deformable MR-CT image registration" @default.
- W2895162016 cites W1488291216 @default.
- W2895162016 cites W1525047497 @default.
- W2895162016 cites W1534850718 @default.
- W2895162016 cites W1558633536 @default.
- W2895162016 cites W1597458585 @default.
- W2895162016 cites W1600136831 @default.
- W2895162016 cites W1888801276 @default.
- W2895162016 cites W1933833053 @default.
- W2895162016 cites W1960717653 @default.
- W2895162016 cites W1970928383 @default.
- W2895162016 cites W1980287119 @default.
- W2895162016 cites W1982366717 @default.
- W2895162016 cites W1983205561 @default.
- W2895162016 cites W1983592655 @default.
- W2895162016 cites W1994102714 @default.
- W2895162016 cites W2004014794 @default.
- W2895162016 cites W2012678027 @default.
- W2895162016 cites W2015643229 @default.
- W2895162016 cites W2028785814 @default.
- W2895162016 cites W2035073813 @default.
- W2895162016 cites W2038952578 @default.
- W2895162016 cites W2048128066 @default.
- W2895162016 cites W2055925277 @default.
- W2895162016 cites W2059774796 @default.
- W2895162016 cites W2068926584 @default.
- W2895162016 cites W2096577216 @default.
- W2895162016 cites W2105456967 @default.
- W2895162016 cites W2113576511 @default.
- W2895162016 cites W2115167851 @default.
- W2895162016 cites W2115245436 @default.
- W2895162016 cites W2118410293 @default.
- W2895162016 cites W2118543684 @default.
- W2895162016 cites W2124357507 @default.
- W2895162016 cites W2124808962 @default.
- W2895162016 cites W2130257210 @default.
- W2895162016 cites W2136145485 @default.
- W2895162016 cites W2144129994 @default.
- W2895162016 cites W2146497006 @default.
- W2895162016 cites W2146786999 @default.
- W2895162016 cites W2152806275 @default.
- W2895162016 cites W2155598194 @default.
- W2895162016 cites W2156875677 @default.
- W2895162016 cites W2158167845 @default.
- W2895162016 cites W2409726467 @default.
- W2895162016 cites W2526454243 @default.
- W2895162016 cites W2527717030 @default.
- W2895162016 cites W2544250444 @default.
- W2895162016 cites W2611747753 @default.
- W2895162016 cites W4234406384 @default.
- W2895162016 doi "https://doi.org/10.1088/1361-6560/aae66c" @default.
- W2895162016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30353886" @default.
- W2895162016 hasPublicationYear "2018" @default.
- W2895162016 type Work @default.
- W2895162016 sameAs 2895162016 @default.
- W2895162016 citedByCount "5" @default.
- W2895162016 countsByYear W28951620162021 @default.
- W2895162016 countsByYear W28951620162022 @default.
- W2895162016 countsByYear W28951620162023 @default.
- W2895162016 crossrefType "journal-article" @default.
- W2895162016 hasAuthorship W2895162016A5009793323 @default.
- W2895162016 hasAuthorship W2895162016A5043560558 @default.
- W2895162016 hasAuthorship W2895162016A5044627248 @default.
- W2895162016 hasAuthorship W2895162016A5068070550 @default.
- W2895162016 hasAuthorship W2895162016A5089623752 @default.
- W2895162016 hasBestOaLocation W28951620162 @default.
- W2895162016 hasConcept C104293457 @default.
- W2895162016 hasConcept C11413529 @default.
- W2895162016 hasConcept C115961682 @default.
- W2895162016 hasConcept C121332964 @default.
- W2895162016 hasConcept C126795593 @default.
- W2895162016 hasConcept C134306372 @default.
- W2895162016 hasConcept C136886441 @default.
- W2895162016 hasConcept C144024400 @default.
- W2895162016 hasConcept C152139883 @default.
- W2895162016 hasConcept C153294291 @default.
- W2895162016 hasConcept C154945302 @default.
- W2895162016 hasConcept C166704113 @default.
- W2895162016 hasConcept C19165224 @default.
- W2895162016 hasConcept C204366326 @default.
- W2895162016 hasConcept C2780391921 @default.
- W2895162016 hasConcept C2989005 @default.
- W2895162016 hasConcept C31972630 @default.
- W2895162016 hasConcept C33923547 @default.
- W2895162016 hasConcept C3770464 @default.
- W2895162016 hasConcept C41008148 @default.
- W2895162016 hasConcept C47556283 @default.
- W2895162016 hasConcept C71924100 @default.
- W2895162016 hasConceptScore W2895162016C104293457 @default.