Matches in SemOpenAlex for { <https://semopenalex.org/work/W28951907> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W28951907 abstract "Robot Navigation in unknown environments faces fundamental challenges in: (i) identification of goal locations, (ii) trajectory planning, and (iii) trajectory execution. Several research studies have explored solutions to this problem, either with technology, such as global positioning systems, or with sophisticated planning algorithms with high computational complexity. This dissertation proposes a distributed three-tiered approach to solving the problem, involving: (i) a Novel scheme for identifying goal locations using a deployed static wireless sensor network (WSN), (ii) a Probabilistic mechanism for the autonomous mobile robots (AMRs) to obtain navigation information from the WSN, and (iii) a Neighborhood way-point computation scheme for improved AMR navigation. The goal is to have AMRs navigate from any point within a WSN-covered region to an identified target via interaction with the WSN only. The constraint is that neither the AMR, nor the WSN possess global positioning information.Identification of goal locations is achieved by generating a Pseudo-Gradient in the WSN field, that has its peak closest to the target in the region. The pseudo-gradient utilizes the important artifact of WSNs, that is, Received Signal Strength (RSS). RSS displays a natural gradient with respect to distance in its distribution. The pseudo-gradient therefore mimics a gradient from any natural occurring phenomenon such as chemical leaks or heat dissipation.The trajectory planning problem is solved by having the AMR follow the pseudo-gradient in one of two ways: (i) the WSN nodes guide the AMR to the goal location through simple WSN node-to-AMR interaction, or (ii) the AMR computes the way-points by estimating the topographical distribution of the pseudo-gradient in its neighborhood. Implicit Surface Interpolation and Artificial Potential Field mechanisms are used to estimate the distribution. In this method, there is no global coordinate reference available for the region, i.e., the AMR only utilizes the relative neighborhood information and the topology of the network to reach the goal location.The challenge of trajectory execution is met by the AMR applying probabilistic mechanisms to the data gathered from the WSN. By applying a particle filtering based bearing estimation approach, the AMR recursively improves the bearing estimates of its WSN neighbor nodes. The AMR then utilizes this information, along with data from the trajectory planning tier, to execute the trajectory way-points.The performance of the proposed three-tier approach is borne out through simulation and hardware experiments.Thus, the novel contributions of this dissertation are the development of: (i) A distributed WSN-based Pseudo-Gradient algorithm, (ii) Novel neighborhood way-point computation mechanisms, and (iii) A Particle Filtering setup for probabilistic WSN neighbor-node bearing estimation." @default.
- W28951907 created "2016-06-24" @default.
- W28951907 creator A5042676837 @default.
- W28951907 creator A5070390129 @default.
- W28951907 date "2012-01-01" @default.
- W28951907 modified "2023-09-22" @default.
- W28951907 title "Signal strength assisted robot navigation in a sensor network field" @default.
- W28951907 hasPublicationYear "2012" @default.
- W28951907 type Work @default.
- W28951907 sameAs 28951907 @default.
- W28951907 citedByCount "0" @default.
- W28951907 crossrefType "journal-article" @default.
- W28951907 hasAuthorship W28951907A5042676837 @default.
- W28951907 hasAuthorship W28951907A5070390129 @default.
- W28951907 hasConcept C111919701 @default.
- W28951907 hasConcept C121332964 @default.
- W28951907 hasConcept C127413603 @default.
- W28951907 hasConcept C1276947 @default.
- W28951907 hasConcept C13662910 @default.
- W28951907 hasConcept C153258448 @default.
- W28951907 hasConcept C154945302 @default.
- W28951907 hasConcept C19966478 @default.
- W28951907 hasConcept C2385561 @default.
- W28951907 hasConcept C24590314 @default.
- W28951907 hasConcept C31258907 @default.
- W28951907 hasConcept C41008148 @default.
- W28951907 hasConcept C49937458 @default.
- W28951907 hasConcept C50644808 @default.
- W28951907 hasConcept C62611344 @default.
- W28951907 hasConcept C66938386 @default.
- W28951907 hasConcept C79403827 @default.
- W28951907 hasConcept C81074085 @default.
- W28951907 hasConcept C90509273 @default.
- W28951907 hasConceptScore W28951907C111919701 @default.
- W28951907 hasConceptScore W28951907C121332964 @default.
- W28951907 hasConceptScore W28951907C127413603 @default.
- W28951907 hasConceptScore W28951907C1276947 @default.
- W28951907 hasConceptScore W28951907C13662910 @default.
- W28951907 hasConceptScore W28951907C153258448 @default.
- W28951907 hasConceptScore W28951907C154945302 @default.
- W28951907 hasConceptScore W28951907C19966478 @default.
- W28951907 hasConceptScore W28951907C2385561 @default.
- W28951907 hasConceptScore W28951907C24590314 @default.
- W28951907 hasConceptScore W28951907C31258907 @default.
- W28951907 hasConceptScore W28951907C41008148 @default.
- W28951907 hasConceptScore W28951907C49937458 @default.
- W28951907 hasConceptScore W28951907C50644808 @default.
- W28951907 hasConceptScore W28951907C62611344 @default.
- W28951907 hasConceptScore W28951907C66938386 @default.
- W28951907 hasConceptScore W28951907C79403827 @default.
- W28951907 hasConceptScore W28951907C81074085 @default.
- W28951907 hasConceptScore W28951907C90509273 @default.
- W28951907 hasLocation W289519071 @default.
- W28951907 hasOpenAccess W28951907 @default.
- W28951907 hasPrimaryLocation W289519071 @default.
- W28951907 hasRelatedWork W1571099066 @default.
- W28951907 hasRelatedWork W2021756895 @default.
- W28951907 hasRelatedWork W2025776175 @default.
- W28951907 hasRelatedWork W2037647258 @default.
- W28951907 hasRelatedWork W2054750052 @default.
- W28951907 hasRelatedWork W2056485311 @default.
- W28951907 hasRelatedWork W2064732096 @default.
- W28951907 hasRelatedWork W2077256793 @default.
- W28951907 hasRelatedWork W2094047278 @default.
- W28951907 hasRelatedWork W2143775806 @default.
- W28951907 hasRelatedWork W2154519884 @default.
- W28951907 hasRelatedWork W2163665575 @default.
- W28951907 hasRelatedWork W2163975141 @default.
- W28951907 hasRelatedWork W2168778765 @default.
- W28951907 hasRelatedWork W2281869873 @default.
- W28951907 hasRelatedWork W2594736560 @default.
- W28951907 hasRelatedWork W2741810799 @default.
- W28951907 hasRelatedWork W3045512028 @default.
- W28951907 hasRelatedWork W3196116052 @default.
- W28951907 hasRelatedWork W345187506 @default.
- W28951907 isParatext "false" @default.
- W28951907 isRetracted "false" @default.
- W28951907 magId "28951907" @default.
- W28951907 workType "article" @default.