Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895295438> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2895295438 abstract "Multiple faults are easily confused with single faults. In order to identify multiple faults more accurately, a highly efficient learning method is proposed based on a double parallel two-hidden-layer extreme learning machine, called DPT-ELM. The DPT-ELM method is a variant of an extreme learning machine (ELM). There are some issues with ELM. First, achieving a high accuracy requires too many hidden nodes; second, the direct connection between the input layer and the output layer is ignored. Accordingly, to deal with the above-mentioned problems, DPT-ELM extends the single-hidden-layer ELM to a two-hidden-layer ELM, which can achieve a desired performance with fewer hidden nodes. In addition, a direct connection is built between the input layer and the output layer. Since the input layer weights and the thresholds of the two hidden layers are determined randomly, this simplifies the improved model and shortens the calculation time. Additionally, to improve the signal to noise ratio (SNR), an adaptive waveform decomposition (AWD) algorithm is used to denoise the vibration signal. Then, the denoised signal is used to extract the eigenvalues by the time-domain and frequency-domain methods. Finally, the eigenvalues are input to the DPT-ELM classifier. In this paper, two groups of rolling bearing data at different speeds, which were collected from a real experimental platform, are used to test the method. Each set of data includes three single fault states, two complex fault states and a healthy state. The experimental results demonstrate that the DPT-ELM method achieves fast learning speed and a high accuracy. Moreover, based on 10-fold cross-validation, it proves to be an effective method to improve the accuracy with fewer hidden nodes." @default.
- W2895295438 created "2018-10-12" @default.
- W2895295438 creator A5041338207 @default.
- W2895295438 creator A5066278058 @default.
- W2895295438 date "2018-07-20" @default.
- W2895295438 modified "2023-09-26" @default.
- W2895295438 title "Diagnosis of multiple faults using a double parallel two-hidden-layer extreme learning machine" @default.
- W2895295438 doi "https://doi.org/10.13543/j.bhxbzr.2018.04.018" @default.
- W2895295438 hasPublicationYear "2018" @default.
- W2895295438 type Work @default.
- W2895295438 sameAs 2895295438 @default.
- W2895295438 citedByCount "0" @default.
- W2895295438 crossrefType "journal-article" @default.
- W2895295438 hasAuthorship W2895295438A5041338207 @default.
- W2895295438 hasAuthorship W2895295438A5066278058 @default.
- W2895295438 hasConcept C11413529 @default.
- W2895295438 hasConcept C153180895 @default.
- W2895295438 hasConcept C154945302 @default.
- W2895295438 hasConcept C2780150128 @default.
- W2895295438 hasConcept C41008148 @default.
- W2895295438 hasConcept C50644808 @default.
- W2895295438 hasConcept C95623464 @default.
- W2895295438 hasConceptScore W2895295438C11413529 @default.
- W2895295438 hasConceptScore W2895295438C153180895 @default.
- W2895295438 hasConceptScore W2895295438C154945302 @default.
- W2895295438 hasConceptScore W2895295438C2780150128 @default.
- W2895295438 hasConceptScore W2895295438C41008148 @default.
- W2895295438 hasConceptScore W2895295438C50644808 @default.
- W2895295438 hasConceptScore W2895295438C95623464 @default.
- W2895295438 hasLocation W28952954381 @default.
- W2895295438 hasOpenAccess W2895295438 @default.
- W2895295438 hasPrimaryLocation W28952954381 @default.
- W2895295438 hasRelatedWork W2005816742 @default.
- W2895295438 hasRelatedWork W2010030411 @default.
- W2895295438 hasRelatedWork W2056552620 @default.
- W2895295438 hasRelatedWork W2329884787 @default.
- W2895295438 hasRelatedWork W2559756464 @default.
- W2895295438 hasRelatedWork W2612695179 @default.
- W2895295438 hasRelatedWork W2775043420 @default.
- W2895295438 hasRelatedWork W2787118059 @default.
- W2895295438 hasRelatedWork W2787725531 @default.
- W2895295438 hasRelatedWork W2792300954 @default.
- W2895295438 hasRelatedWork W2855307387 @default.
- W2895295438 hasRelatedWork W2911442613 @default.
- W2895295438 hasRelatedWork W2954421373 @default.
- W2895295438 hasRelatedWork W2980702394 @default.
- W2895295438 hasRelatedWork W3086208421 @default.
- W2895295438 hasRelatedWork W3089157029 @default.
- W2895295438 hasRelatedWork W3141088381 @default.
- W2895295438 hasRelatedWork W3156865582 @default.
- W2895295438 hasRelatedWork W3159741277 @default.
- W2895295438 hasRelatedWork W65053017 @default.
- W2895295438 isParatext "false" @default.
- W2895295438 isRetracted "false" @default.
- W2895295438 magId "2895295438" @default.
- W2895295438 workType "article" @default.