Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895312550> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2895312550 endingPage "1163" @default.
- W2895312550 startingPage "1154" @default.
- W2895312550 abstract "Text messages and social network posts are often included in big data and are frequently invaluable sources of health data. When machine learning or data mining is used, it is important to perform an automatic process for integrating all available and related health data. Artificial Neural Network (ANN) is one of the machine learning methods flexible in using algorithms to detect complicated nonlinear relationships within huge datasets. Pharmacokinetics uses genetics to individualize drug therapy. Because genetic and pharmacological analysis often require large scale computation, Big Data analytics has shown potential in this area. Personal data from various sensors can often be used for making health and treatment recommendations, taking appropriate action for a patient’s lifestyle choices and early diagnosis vital to advancing quality of care. Big data techniques such as hadoop and spark have been used in various areas of healthcare and big data analytics has been employed in great datasets to expose hidden patterns or correlations for effective decision-making. Challenges of big data in healthcare, concerned with gathering material from multifaceted heterogonous patient sources still exist, although hadoop has been employed as the processing unit for heterogeneous data gathered from various body sensors. The most critical necessity in a healthcare big data system is the data security; however, users are continuously applying big data–driven strategies to solve the various problems and challenges." @default.
- W2895312550 created "2018-10-12" @default.
- W2895312550 creator A5066223731 @default.
- W2895312550 creator A5066620961 @default.
- W2895312550 date "2018-03-01" @default.
- W2895312550 modified "2023-09-28" @default.
- W2895312550 title "Healthcare Driven by Big Data Analytics" @default.
- W2895312550 doi "https://doi.org/10.3844/ajeassp.2018.1154.1163" @default.
- W2895312550 hasPublicationYear "2018" @default.
- W2895312550 type Work @default.
- W2895312550 sameAs 2895312550 @default.
- W2895312550 citedByCount "3" @default.
- W2895312550 countsByYear W28953125502019 @default.
- W2895312550 countsByYear W28953125502020 @default.
- W2895312550 crossrefType "journal-article" @default.
- W2895312550 hasAuthorship W2895312550A5066223731 @default.
- W2895312550 hasAuthorship W2895312550A5066620961 @default.
- W2895312550 hasBestOaLocation W28953125501 @default.
- W2895312550 hasConcept C111919701 @default.
- W2895312550 hasConcept C119857082 @default.
- W2895312550 hasConcept C124101348 @default.
- W2895312550 hasConcept C154945302 @default.
- W2895312550 hasConcept C160735492 @default.
- W2895312550 hasConcept C162324750 @default.
- W2895312550 hasConcept C175801342 @default.
- W2895312550 hasConcept C199360897 @default.
- W2895312550 hasConcept C2522767166 @default.
- W2895312550 hasConcept C2781215313 @default.
- W2895312550 hasConcept C41008148 @default.
- W2895312550 hasConcept C50522688 @default.
- W2895312550 hasConcept C75684735 @default.
- W2895312550 hasConcept C79158427 @default.
- W2895312550 hasConcept C98045186 @default.
- W2895312550 hasConceptScore W2895312550C111919701 @default.
- W2895312550 hasConceptScore W2895312550C119857082 @default.
- W2895312550 hasConceptScore W2895312550C124101348 @default.
- W2895312550 hasConceptScore W2895312550C154945302 @default.
- W2895312550 hasConceptScore W2895312550C160735492 @default.
- W2895312550 hasConceptScore W2895312550C162324750 @default.
- W2895312550 hasConceptScore W2895312550C175801342 @default.
- W2895312550 hasConceptScore W2895312550C199360897 @default.
- W2895312550 hasConceptScore W2895312550C2522767166 @default.
- W2895312550 hasConceptScore W2895312550C2781215313 @default.
- W2895312550 hasConceptScore W2895312550C41008148 @default.
- W2895312550 hasConceptScore W2895312550C50522688 @default.
- W2895312550 hasConceptScore W2895312550C75684735 @default.
- W2895312550 hasConceptScore W2895312550C79158427 @default.
- W2895312550 hasConceptScore W2895312550C98045186 @default.
- W2895312550 hasIssue "3" @default.
- W2895312550 hasLocation W28953125501 @default.
- W2895312550 hasLocation W28953125502 @default.
- W2895312550 hasOpenAccess W2895312550 @default.
- W2895312550 hasPrimaryLocation W28953125501 @default.
- W2895312550 hasRelatedWork W2752106475 @default.
- W2895312550 hasRelatedWork W2769430831 @default.
- W2895312550 hasRelatedWork W2810012599 @default.
- W2895312550 hasRelatedWork W2921734339 @default.
- W2895312550 hasRelatedWork W3013315095 @default.
- W2895312550 hasRelatedWork W3177086633 @default.
- W2895312550 hasRelatedWork W3177097589 @default.
- W2895312550 hasRelatedWork W3194102186 @default.
- W2895312550 hasRelatedWork W4226411239 @default.
- W2895312550 hasRelatedWork W4288085467 @default.
- W2895312550 hasVolume "11" @default.
- W2895312550 isParatext "false" @default.
- W2895312550 isRetracted "false" @default.
- W2895312550 magId "2895312550" @default.
- W2895312550 workType "article" @default.