Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895513138> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2895513138 abstract "This thesis presents a novel application of machine learning technology to automate network security audit and penetration testing processes in particular. A model-free reinforcement learning approach is presented. It is characterized by the absence of the environmental model. The model is derived autonomously by the audit system while acting in the tested computer network. The penetration testing process is specified as a Markov decision process (MDP) without definition of reward and transition functions for every state/action pair. The presented approach includes application of traditional and modified Q-learning algorithms. A traditional Q-learning algorithm learns the action-value function stored in the table, which gives the expected utility of executing a particular action in a particular state of the penetration testing process. The modified Q-learning algorithm differs by incorporation of the state space approximator and representation of the action-value function as a linear combination of features. Two deep architectures of the approximator are presented: autoencoder joint with artificial neural network (ANN) and autoencoder joint with recurrent neural network (RNN). The autoencoder is used to derive the feature set defining audited hosts. ANN is intended to approximate the state space of the audit process based on derived features. RNN is a more advanced version of the approximator and differs by the existence of the additional loop connections from hidden to input layers of the neural network. Such architecture incorporates previously executed actions into new inputs. It gives the opportunity to audit system learn sequences of actions leading to the goal of the audit, which is defined as receiving administrator rights on the host. The model-free reinforcement learning approach based on traditional Q-learning algorithms was also applied to reveal new vulnerabilities, buffer overflow in particular. The penetration testing system showed the ability to discover a string, exploiting potential vulnerability, by learning its formation process on the go.In order to prove the concept and to test the efficiency of an approach, audit tool was developed. Presented results are intended to demonstrate the adaptivity of the approach, performance of the algorithms and deep machine learning architectures. Different sets of hyperparameters are compared graphically to test the ability of convergence to the optimal action policy. An action policy is a sequence of actions, leading to the audit goal (getting admin rights on the remote host). The testing environment is also presented. It consists of 80+ virtual machines based on a vSphere virtualization platform. This combination of hosts represents a typical corporate network with Users segment, Demilitarized zone (DMZ) and external segment (Internet). The network has typical corporate services available: web server, mail server, file server, SSH, SQL server. During the testing process, the audit system acts as an attacker from the Internet." @default.
- W2895513138 created "2018-10-12" @default.
- W2895513138 creator A5088201292 @default.
- W2895513138 date "2017-01-01" @default.
- W2895513138 modified "2023-09-26" @default.
- W2895513138 title "A machine learning approach for smart computer security audit" @default.
- W2895513138 hasPublicationYear "2017" @default.
- W2895513138 type Work @default.
- W2895513138 sameAs 2895513138 @default.
- W2895513138 citedByCount "0" @default.
- W2895513138 crossrefType "dissertation" @default.
- W2895513138 hasAuthorship W2895513138A5088201292 @default.
- W2895513138 hasConcept C101738243 @default.
- W2895513138 hasConcept C105795698 @default.
- W2895513138 hasConcept C106189395 @default.
- W2895513138 hasConcept C119857082 @default.
- W2895513138 hasConcept C147168706 @default.
- W2895513138 hasConcept C154945302 @default.
- W2895513138 hasConcept C159886148 @default.
- W2895513138 hasConcept C162324750 @default.
- W2895513138 hasConcept C187736073 @default.
- W2895513138 hasConcept C199521495 @default.
- W2895513138 hasConcept C33923547 @default.
- W2895513138 hasConcept C41008148 @default.
- W2895513138 hasConcept C50644808 @default.
- W2895513138 hasConcept C72434380 @default.
- W2895513138 hasConcept C97541855 @default.
- W2895513138 hasConceptScore W2895513138C101738243 @default.
- W2895513138 hasConceptScore W2895513138C105795698 @default.
- W2895513138 hasConceptScore W2895513138C106189395 @default.
- W2895513138 hasConceptScore W2895513138C119857082 @default.
- W2895513138 hasConceptScore W2895513138C147168706 @default.
- W2895513138 hasConceptScore W2895513138C154945302 @default.
- W2895513138 hasConceptScore W2895513138C159886148 @default.
- W2895513138 hasConceptScore W2895513138C162324750 @default.
- W2895513138 hasConceptScore W2895513138C187736073 @default.
- W2895513138 hasConceptScore W2895513138C199521495 @default.
- W2895513138 hasConceptScore W2895513138C33923547 @default.
- W2895513138 hasConceptScore W2895513138C41008148 @default.
- W2895513138 hasConceptScore W2895513138C50644808 @default.
- W2895513138 hasConceptScore W2895513138C72434380 @default.
- W2895513138 hasConceptScore W2895513138C97541855 @default.
- W2895513138 hasLocation W28955131381 @default.
- W2895513138 hasOpenAccess W2895513138 @default.
- W2895513138 hasPrimaryLocation W28955131381 @default.
- W2895513138 hasRelatedWork W1146913598 @default.
- W2895513138 hasRelatedWork W1823724965 @default.
- W2895513138 hasRelatedWork W2086413597 @default.
- W2895513138 hasRelatedWork W2186535720 @default.
- W2895513138 hasRelatedWork W2283930134 @default.
- W2895513138 hasRelatedWork W2552096074 @default.
- W2895513138 hasRelatedWork W2598177493 @default.
- W2895513138 hasRelatedWork W2643170251 @default.
- W2895513138 hasRelatedWork W2983118067 @default.
- W2895513138 hasRelatedWork W3010574430 @default.
- W2895513138 hasRelatedWork W3169261115 @default.
- W2895513138 hasRelatedWork W3189510914 @default.
- W2895513138 hasRelatedWork W2829595752 @default.
- W2895513138 hasRelatedWork W2956551054 @default.
- W2895513138 hasRelatedWork W2960976199 @default.
- W2895513138 hasRelatedWork W3129967264 @default.
- W2895513138 hasRelatedWork W3132571453 @default.
- W2895513138 hasRelatedWork W3138097578 @default.
- W2895513138 hasRelatedWork W3154193098 @default.
- W2895513138 hasRelatedWork W3168710184 @default.
- W2895513138 isParatext "false" @default.
- W2895513138 isRetracted "false" @default.
- W2895513138 magId "2895513138" @default.
- W2895513138 workType "dissertation" @default.