Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895516893> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2895516893 abstract "For over two decades, there has been considerable interest in and research devoted to the use of artificial intelligence (AI) for maximizing the value of power generating assets. AI may be thought of as application of intelligence in a systematic and rational manner to power plant equipment, components and processes for self-learning and solving complex problems. AI techniques are increasingly finding applications in the power industry in addressing issues related to performance, reliability, availability, maintenance, automation, cybersecurity, workforce, and others. In the past several years, pace has accelerated in AI techniques, largely stemming from increased speed and power in computing, advances in technology, and utilization of algorithms. The Industrial Internet of Things (IIoT) is rapidly gaining ground by leveraging AI, digital assets and data analytics in managing and optimizing plant operations and performance of power generating assets. This paper provides an overview of how AI techniques are being utilized to maximize the value of power generating assets and prognosis for future use of AI in the power industry." @default.
- W2895516893 created "2018-10-12" @default.
- W2895516893 creator A5045688966 @default.
- W2895516893 date "2018-06-24" @default.
- W2895516893 modified "2023-09-28" @default.
- W2895516893 title "Artificial Intelligence (AI) Techniques for Maximizing Value of Power Generating Assets" @default.
- W2895516893 doi "https://doi.org/10.1115/power2018-7137" @default.
- W2895516893 hasPublicationYear "2018" @default.
- W2895516893 type Work @default.
- W2895516893 sameAs 2895516893 @default.
- W2895516893 citedByCount "0" @default.
- W2895516893 crossrefType "proceedings-article" @default.
- W2895516893 hasAuthorship W2895516893A5045688966 @default.
- W2895516893 hasConcept C119857082 @default.
- W2895516893 hasConcept C121332964 @default.
- W2895516893 hasConcept C154945302 @default.
- W2895516893 hasConcept C163258240 @default.
- W2895516893 hasConcept C2776291640 @default.
- W2895516893 hasConcept C41008148 @default.
- W2895516893 hasConcept C62520636 @default.
- W2895516893 hasConceptScore W2895516893C119857082 @default.
- W2895516893 hasConceptScore W2895516893C121332964 @default.
- W2895516893 hasConceptScore W2895516893C154945302 @default.
- W2895516893 hasConceptScore W2895516893C163258240 @default.
- W2895516893 hasConceptScore W2895516893C2776291640 @default.
- W2895516893 hasConceptScore W2895516893C41008148 @default.
- W2895516893 hasConceptScore W2895516893C62520636 @default.
- W2895516893 hasLocation W28955168931 @default.
- W2895516893 hasOpenAccess W2895516893 @default.
- W2895516893 hasPrimaryLocation W28955168931 @default.
- W2895516893 hasRelatedWork W115119765 @default.
- W2895516893 hasRelatedWork W2104318747 @default.
- W2895516893 hasRelatedWork W2326467935 @default.
- W2895516893 hasRelatedWork W2351518854 @default.
- W2895516893 hasRelatedWork W2604976695 @default.
- W2895516893 hasRelatedWork W2767220178 @default.
- W2895516893 hasRelatedWork W2909448691 @default.
- W2895516893 hasRelatedWork W2975657899 @default.
- W2895516893 hasRelatedWork W2982508895 @default.
- W2895516893 hasRelatedWork W3033671017 @default.
- W2895516893 hasRelatedWork W3115847159 @default.
- W2895516893 hasRelatedWork W3124995520 @default.
- W2895516893 hasRelatedWork W3130807234 @default.
- W2895516893 hasRelatedWork W3145073127 @default.
- W2895516893 hasRelatedWork W3195692120 @default.
- W2895516893 hasRelatedWork W3201523293 @default.
- W2895516893 hasRelatedWork W2104095438 @default.
- W2895516893 hasRelatedWork W2835795047 @default.
- W2895516893 hasRelatedWork W2965589601 @default.
- W2895516893 hasRelatedWork W3039170459 @default.
- W2895516893 isParatext "false" @default.
- W2895516893 isRetracted "false" @default.
- W2895516893 magId "2895516893" @default.
- W2895516893 workType "article" @default.