Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895520711> ?p ?o ?g. }
- W2895520711 endingPage "514.e11" @default.
- W2895520711 startingPage "514.e1" @default.
- W2895520711 abstract "Purpose Adipose-derived mesenchymal stromal cells (MSCs) have emerged as promising tools for peripheral nerve reconstruction. There is a paucity of information regarding the ultimate survivorship of implanted MSCs or whether these cells remain where they are placed. The aim of the present study was to track the in vivo distribution and survival of MSCs seeded on a decellularized nerve allograft reconstruction of a peripheral nerve defect using luciferase-based bioluminescence imaging (BLI). Methods To determine the in vivo survivability of MSCs, autologous Lewis rat MSCs were stably labeled with luciferase by lentiviral particles. Labeled cells were dynamically seeded onto a Sprague Dawley decellularized rat nerve allograft and used to bridge a 10-mm sciatic nerve defect. The MSC survival was determined by performing in vivo BLI to detect living cells. Twelve animals were examined at 24 hours after implantation, 3, 7, 9, 11, and 14 days, and at daily intervals thereafter if signals were still present. Results Labeled MSCs could be detected for up to 29 days. Gradually diminishing BLI signals were observed within the first week following implantation. Implanted MSCs were not detected anywhere other than the site of surgery. Conclusions The MSCs seeded on decellularized nerve allografts can survive in vivo but have finite survival after implantation. There was no evidence of migration of MSCs to surrounding tissues. Clinical relevance The findings support a therapeutic approach that combines MSCs with a biological scaffold for peripheral nerve surgery. It provides understanding of the viability and distribution of implanted MSCs, which is a prerequisite before clinical translation can be considered. Adipose-derived mesenchymal stromal cells (MSCs) have emerged as promising tools for peripheral nerve reconstruction. There is a paucity of information regarding the ultimate survivorship of implanted MSCs or whether these cells remain where they are placed. The aim of the present study was to track the in vivo distribution and survival of MSCs seeded on a decellularized nerve allograft reconstruction of a peripheral nerve defect using luciferase-based bioluminescence imaging (BLI). To determine the in vivo survivability of MSCs, autologous Lewis rat MSCs were stably labeled with luciferase by lentiviral particles. Labeled cells were dynamically seeded onto a Sprague Dawley decellularized rat nerve allograft and used to bridge a 10-mm sciatic nerve defect. The MSC survival was determined by performing in vivo BLI to detect living cells. Twelve animals were examined at 24 hours after implantation, 3, 7, 9, 11, and 14 days, and at daily intervals thereafter if signals were still present. Labeled MSCs could be detected for up to 29 days. Gradually diminishing BLI signals were observed within the first week following implantation. Implanted MSCs were not detected anywhere other than the site of surgery. The MSCs seeded on decellularized nerve allografts can survive in vivo but have finite survival after implantation. There was no evidence of migration of MSCs to surrounding tissues." @default.
- W2895520711 created "2018-10-12" @default.
- W2895520711 creator A5008755139 @default.
- W2895520711 creator A5025896778 @default.
- W2895520711 creator A5027296390 @default.
- W2895520711 creator A5052731075 @default.
- W2895520711 creator A5061214671 @default.
- W2895520711 creator A5079179265 @default.
- W2895520711 date "2019-06-01" @default.
- W2895520711 modified "2023-10-18" @default.
- W2895520711 title "In Vivo Survival of Mesenchymal Stromal Cell–Enhanced Decellularized Nerve Grafts for Segmental Peripheral Nerve Reconstruction" @default.
- W2895520711 cites W1534936202 @default.
- W2895520711 cites W1877843909 @default.
- W2895520711 cites W1944015119 @default.
- W2895520711 cites W1968668812 @default.
- W2895520711 cites W1974380002 @default.
- W2895520711 cites W1981731678 @default.
- W2895520711 cites W1983026013 @default.
- W2895520711 cites W1989975397 @default.
- W2895520711 cites W2003865749 @default.
- W2895520711 cites W2006356556 @default.
- W2895520711 cites W2012062982 @default.
- W2895520711 cites W2013455892 @default.
- W2895520711 cites W2017027901 @default.
- W2895520711 cites W2022630144 @default.
- W2895520711 cites W2023611570 @default.
- W2895520711 cites W2031190236 @default.
- W2895520711 cites W2032281007 @default.
- W2895520711 cites W2043943632 @default.
- W2895520711 cites W2045210663 @default.
- W2895520711 cites W2049046844 @default.
- W2895520711 cites W2051816916 @default.
- W2895520711 cites W2057259136 @default.
- W2895520711 cites W2058092020 @default.
- W2895520711 cites W2064748674 @default.
- W2895520711 cites W2068475718 @default.
- W2895520711 cites W2069131272 @default.
- W2895520711 cites W2074529345 @default.
- W2895520711 cites W2081373880 @default.
- W2895520711 cites W2081581508 @default.
- W2895520711 cites W2091936372 @default.
- W2895520711 cites W2094897829 @default.
- W2895520711 cites W2115590226 @default.
- W2895520711 cites W2139282088 @default.
- W2895520711 cites W2141069547 @default.
- W2895520711 cites W2141791674 @default.
- W2895520711 cites W2142410730 @default.
- W2895520711 cites W2154691915 @default.
- W2895520711 cites W2164329646 @default.
- W2895520711 cites W2226636383 @default.
- W2895520711 cites W2232391848 @default.
- W2895520711 cites W2264863733 @default.
- W2895520711 cites W2288240510 @default.
- W2895520711 cites W2474207607 @default.
- W2895520711 cites W2567012779 @default.
- W2895520711 cites W2568260914 @default.
- W2895520711 cites W2592160830 @default.
- W2895520711 cites W2609030733 @default.
- W2895520711 cites W2610268818 @default.
- W2895520711 cites W2805809576 @default.
- W2895520711 cites W4237304395 @default.
- W2895520711 doi "https://doi.org/10.1016/j.jhsa.2018.07.010" @default.
- W2895520711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30301645" @default.
- W2895520711 hasPublicationYear "2019" @default.
- W2895520711 type Work @default.
- W2895520711 sameAs 2895520711 @default.
- W2895520711 citedByCount "14" @default.
- W2895520711 countsByYear W28955207112020 @default.
- W2895520711 countsByYear W28955207112021 @default.
- W2895520711 countsByYear W28955207112022 @default.
- W2895520711 countsByYear W28955207112023 @default.
- W2895520711 crossrefType "journal-article" @default.
- W2895520711 hasAuthorship W2895520711A5008755139 @default.
- W2895520711 hasAuthorship W2895520711A5025896778 @default.
- W2895520711 hasAuthorship W2895520711A5027296390 @default.
- W2895520711 hasAuthorship W2895520711A5052731075 @default.
- W2895520711 hasAuthorship W2895520711A5061214671 @default.
- W2895520711 hasAuthorship W2895520711A5079179265 @default.
- W2895520711 hasConcept C105702510 @default.
- W2895520711 hasConcept C111335760 @default.
- W2895520711 hasConcept C136229726 @default.
- W2895520711 hasConcept C142724271 @default.
- W2895520711 hasConcept C150903083 @default.
- W2895520711 hasConcept C161997846 @default.
- W2895520711 hasConcept C16930146 @default.
- W2895520711 hasConcept C190672674 @default.
- W2895520711 hasConcept C198826908 @default.
- W2895520711 hasConcept C207001950 @default.
- W2895520711 hasConcept C2781149210 @default.
- W2895520711 hasConcept C49892992 @default.
- W2895520711 hasConcept C54009773 @default.
- W2895520711 hasConcept C54355233 @default.
- W2895520711 hasConcept C71924100 @default.
- W2895520711 hasConcept C81885089 @default.
- W2895520711 hasConcept C86803240 @default.
- W2895520711 hasConceptScore W2895520711C105702510 @default.
- W2895520711 hasConceptScore W2895520711C111335760 @default.
- W2895520711 hasConceptScore W2895520711C136229726 @default.