Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895524927> ?p ?o ?g. }
- W2895524927 endingPage "643" @default.
- W2895524927 startingPage "626" @default.
- W2895524927 abstract "We present a data-driven approach to reconstructing high-resolution and detailed volumetric representations of 3D shapes. Although well studied, algorithms for volumetric fusion from multi-view depth scans are still prone to scanning noise and occlusions, making it hard to obtain high-fidelity 3D reconstructions. In this paper, inspired by recent advances in efficient 3D deep learning techniques, we introduce a novel cascaded 3D convolutional network architecture, which learns to reconstruct implicit surface representations from noisy and incomplete depth maps in a progressive, coarse-to-fine manner. To this end, we also develop an algorithm for end-to-end training of the proposed cascaded structure. Qualitative and quantitative experimental results on both simulated and real-world datasets demonstrate that the presented approach outperforms existing state-of-the-art work in terms of quality and fidelity of reconstructed models." @default.
- W2895524927 created "2018-10-12" @default.
- W2895524927 creator A5013917396 @default.
- W2895524927 creator A5019712537 @default.
- W2895524927 creator A5036300670 @default.
- W2895524927 creator A5037233582 @default.
- W2895524927 creator A5091525681 @default.
- W2895524927 date "2018-01-01" @default.
- W2895524927 modified "2023-10-01" @default.
- W2895524927 title "Learning to Reconstruct High-Quality 3D Shapes with Cascaded Fully Convolutional Networks" @default.
- W2895524927 cites W1525571356 @default.
- W2895524927 cites W1901129140 @default.
- W2895524927 cites W1964057156 @default.
- W2895524927 cites W1977758817 @default.
- W2895524927 cites W1979061520 @default.
- W2895524927 cites W1983553998 @default.
- W2895524927 cites W1987648924 @default.
- W2895524927 cites W1992642990 @default.
- W2895524927 cites W2004402003 @default.
- W2895524927 cites W2009422376 @default.
- W2895524927 cites W2021930164 @default.
- W2895524927 cites W2028207987 @default.
- W2895524927 cites W2039594111 @default.
- W2895524927 cites W2044618760 @default.
- W2895524927 cites W2049351243 @default.
- W2895524927 cites W2053825465 @default.
- W2895524927 cites W2057316718 @default.
- W2895524927 cites W2065906272 @default.
- W2895524927 cites W2068337491 @default.
- W2895524927 cites W2077263423 @default.
- W2895524927 cites W2091226544 @default.
- W2895524927 cites W2091297047 @default.
- W2895524927 cites W2163827099 @default.
- W2895524927 cites W2167335287 @default.
- W2895524927 cites W2168545424 @default.
- W2895524927 cites W2250172176 @default.
- W2895524927 cites W2338532005 @default.
- W2895524927 cites W2342277278 @default.
- W2895524927 cites W2345333930 @default.
- W2895524927 cites W2366389387 @default.
- W2895524927 cites W2444097022 @default.
- W2895524927 cites W2464708700 @default.
- W2895524927 cites W2495603374 @default.
- W2895524927 cites W2520105578 @default.
- W2895524927 cites W2527142681 @default.
- W2895524927 cites W2556802233 @default.
- W2895524927 cites W2557465155 @default.
- W2895524927 cites W2559882727 @default.
- W2895524927 cites W2560609797 @default.
- W2895524927 cites W2603429625 @default.
- W2895524927 cites W2604493845 @default.
- W2895524927 cites W2606840594 @default.
- W2895524927 cites W2609754928 @default.
- W2895524927 cites W2613041730 @default.
- W2895524927 cites W2751274923 @default.
- W2895524927 cites W2963622297 @default.
- W2895524927 cites W2963648573 @default.
- W2895524927 cites W2963735494 @default.
- W2895524927 cites W2963739349 @default.
- W2895524927 cites W3002795340 @default.
- W2895524927 cites W3102132650 @default.
- W2895524927 cites W3137369665 @default.
- W2895524927 cites W4233857083 @default.
- W2895524927 cites W4252201060 @default.
- W2895524927 doi "https://doi.org/10.1007/978-3-030-01240-3_38" @default.
- W2895524927 hasPublicationYear "2018" @default.
- W2895524927 type Work @default.
- W2895524927 sameAs 2895524927 @default.
- W2895524927 citedByCount "20" @default.
- W2895524927 countsByYear W28955249272019 @default.
- W2895524927 countsByYear W28955249272020 @default.
- W2895524927 countsByYear W28955249272021 @default.
- W2895524927 countsByYear W28955249272022 @default.
- W2895524927 countsByYear W28955249272023 @default.
- W2895524927 crossrefType "book-chapter" @default.
- W2895524927 hasAuthorship W2895524927A5013917396 @default.
- W2895524927 hasAuthorship W2895524927A5019712537 @default.
- W2895524927 hasAuthorship W2895524927A5036300670 @default.
- W2895524927 hasAuthorship W2895524927A5037233582 @default.
- W2895524927 hasAuthorship W2895524927A5091525681 @default.
- W2895524927 hasConcept C108583219 @default.
- W2895524927 hasConcept C113364801 @default.
- W2895524927 hasConcept C11413529 @default.
- W2895524927 hasConcept C115961682 @default.
- W2895524927 hasConcept C119599485 @default.
- W2895524927 hasConcept C127413603 @default.
- W2895524927 hasConcept C153180895 @default.
- W2895524927 hasConcept C154945302 @default.
- W2895524927 hasConcept C2776459999 @default.
- W2895524927 hasConcept C31972630 @default.
- W2895524927 hasConcept C41008148 @default.
- W2895524927 hasConcept C76155785 @default.
- W2895524927 hasConcept C81363708 @default.
- W2895524927 hasConcept C99498987 @default.
- W2895524927 hasConceptScore W2895524927C108583219 @default.
- W2895524927 hasConceptScore W2895524927C113364801 @default.
- W2895524927 hasConceptScore W2895524927C11413529 @default.
- W2895524927 hasConceptScore W2895524927C115961682 @default.