Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895526599> ?p ?o ?g. }
- W2895526599 endingPage "5449" @default.
- W2895526599 startingPage "5437" @default.
- W2895526599 abstract "Robust and reliable reconstruction of images from noisy and incomplete projection data holds significant potential for proliferation of cost-effective medical imaging technologies. Since conventional reconstruction techniques can generate severe artifacts in the recovered images, a notable line of research constitutes development of appropriate algorithms to compensate for missing data and to reduce noise. In the present work, we investigate the effectiveness of state-of-the-art methodologies developed for image inpainting and noise reduction to preserve the quality of reconstructed images from undersampled PET data. We aimed to assess and ascertain whether missing data recovery is best performed in the projection space prior to reconstruction or adjoined with the reconstruction step in image space.Different strategies for data recovery were investigated using realistic patient derived phantoms (brain and abdomen) in PET scanners with partial geometry (small and large gap structures). Specifically, gap filling strategies in projection space were compared with reconstruction based compensation in image space. The methods used for filling the gap structure in sinogram PET data include partial differential equation based techniques (PDE), total variation (TV) regularization, discrete cosine transform(DCT)-based penalized regression, and dictionary learning based inpainting (DLI). For compensation in image space, compressed sensing based image reconstruction methods were applied. These include the preconditioned alternating projection (PAPA) algorithm with first and higher order total variation (HOTV) regularization as well as dictionary learning based compressed sensing (DLCS). We additionally investigated the performance of the methods for recovery of missing data in the presence of simulated lesion. The impact of different noise levels in the undersampled sinograms on performance of the approaches were also evaluated.In our first study (brain imaging), DLI was shown to outperform other methods for small gap structure in terms of root mean square error (RMSE) and structural similarity (SSIM), though having relatively high computational cost. For large gap structure, HOTV-PAPA produces better results. In the second study (abdomen imaging), again the best performance belonged to DLI for small gap, and HOTV-PAPA for large gap. In our experiments for lesion simulation on patient brain phantom data, the best performance in term of contrast recovery coefficient (CRC) for small gap simulation belonged to DLI, while in the case of large gap simulation, HOTV-PAPA outperformed others. Our evaluation of the impact of noise on performance of approaches indicated that in case of low and medium noise levels, DLI still produces favorable results among inpainting approaches. However, for high noise levels, the performance of PDE4 (variant of PDE) and DLI are very competitive.Our results showed that estimation of missing data in projection space as a preprocessing step before reconstruction can improve the quality of recovered images especially for small gap structures. However, when large portions of data are missing, compressed sensing techniques adjoined with the reconstruction step in image space were the best strategy." @default.
- W2895526599 created "2018-10-12" @default.
- W2895526599 creator A5002606129 @default.
- W2895526599 creator A5008796907 @default.
- W2895526599 creator A5011869870 @default.
- W2895526599 creator A5021438906 @default.
- W2895526599 date "2018-10-25" @default.
- W2895526599 modified "2023-09-26" @default.
- W2895526599 title "Recovery of missing data in partial geometry <scp>PET</scp> scanners: Compensation in projection space vs image space" @default.
- W2895526599 cites W1498220771 @default.
- W2895526599 cites W1511443099 @default.
- W2895526599 cites W1647554959 @default.
- W2895526599 cites W1757367103 @default.
- W2895526599 cites W1973728860 @default.
- W2895526599 cites W1993388378 @default.
- W2895526599 cites W2025944155 @default.
- W2895526599 cites W2042096957 @default.
- W2895526599 cites W2045995543 @default.
- W2895526599 cites W2055056592 @default.
- W2895526599 cites W2056217824 @default.
- W2895526599 cites W2056942713 @default.
- W2895526599 cites W2061979078 @default.
- W2895526599 cites W2063171967 @default.
- W2895526599 cites W2069629287 @default.
- W2895526599 cites W2078204800 @default.
- W2895526599 cites W2085048703 @default.
- W2895526599 cites W2086962710 @default.
- W2895526599 cites W2089909809 @default.
- W2895526599 cites W2092663520 @default.
- W2895526599 cites W2094625495 @default.
- W2895526599 cites W2097795807 @default.
- W2895526599 cites W2103559027 @default.
- W2895526599 cites W2105038642 @default.
- W2895526599 cites W2109898560 @default.
- W2895526599 cites W2119667497 @default.
- W2895526599 cites W2128659236 @default.
- W2895526599 cites W2133172642 @default.
- W2895526599 cites W2133665775 @default.
- W2895526599 cites W2139518045 @default.
- W2895526599 cites W2139795045 @default.
- W2895526599 cites W2147825506 @default.
- W2895526599 cites W2154744699 @default.
- W2895526599 cites W2160547390 @default.
- W2895526599 cites W2163112044 @default.
- W2895526599 cites W2167400582 @default.
- W2895526599 cites W2170342116 @default.
- W2895526599 cites W2254830930 @default.
- W2895526599 cites W2295936755 @default.
- W2895526599 cites W2300951415 @default.
- W2895526599 cites W2401830929 @default.
- W2895526599 cites W2609292681 @default.
- W2895526599 cites W2963322354 @default.
- W2895526599 cites W4292363360 @default.
- W2895526599 doi "https://doi.org/10.1002/mp.13225" @default.
- W2895526599 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6329391" @default.
- W2895526599 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30288762" @default.
- W2895526599 hasPublicationYear "2018" @default.
- W2895526599 type Work @default.
- W2895526599 sameAs 2895526599 @default.
- W2895526599 citedByCount "6" @default.
- W2895526599 countsByYear W28955265992019 @default.
- W2895526599 countsByYear W28955265992021 @default.
- W2895526599 countsByYear W28955265992022 @default.
- W2895526599 crossrefType "journal-article" @default.
- W2895526599 hasAuthorship W2895526599A5002606129 @default.
- W2895526599 hasAuthorship W2895526599A5008796907 @default.
- W2895526599 hasAuthorship W2895526599A5011869870 @default.
- W2895526599 hasAuthorship W2895526599A5021438906 @default.
- W2895526599 hasBestOaLocation W28955265992 @default.
- W2895526599 hasConcept C102519508 @default.
- W2895526599 hasConcept C11413529 @default.
- W2895526599 hasConcept C115961682 @default.
- W2895526599 hasConcept C11727466 @default.
- W2895526599 hasConcept C119857082 @default.
- W2895526599 hasConcept C124851039 @default.
- W2895526599 hasConcept C134306372 @default.
- W2895526599 hasConcept C141379421 @default.
- W2895526599 hasConcept C153180895 @default.
- W2895526599 hasConcept C154945302 @default.
- W2895526599 hasConcept C163294075 @default.
- W2895526599 hasConcept C197413143 @default.
- W2895526599 hasConcept C2776135515 @default.
- W2895526599 hasConcept C31972630 @default.
- W2895526599 hasConcept C33923547 @default.
- W2895526599 hasConcept C41008148 @default.
- W2895526599 hasConcept C55020928 @default.
- W2895526599 hasConcept C57493831 @default.
- W2895526599 hasConcept C9357733 @default.
- W2895526599 hasConceptScore W2895526599C102519508 @default.
- W2895526599 hasConceptScore W2895526599C11413529 @default.
- W2895526599 hasConceptScore W2895526599C115961682 @default.
- W2895526599 hasConceptScore W2895526599C11727466 @default.
- W2895526599 hasConceptScore W2895526599C119857082 @default.
- W2895526599 hasConceptScore W2895526599C124851039 @default.
- W2895526599 hasConceptScore W2895526599C134306372 @default.
- W2895526599 hasConceptScore W2895526599C141379421 @default.
- W2895526599 hasConceptScore W2895526599C153180895 @default.
- W2895526599 hasConceptScore W2895526599C154945302 @default.