Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895528396> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2895528396 abstract "Mixture of Gaussian Processes (MGP) is a generative model being powerful and widely used in the fields of machine learning and data mining. However, when we learn this generative model on a given dataset, we should set the probability density function (pdf) of the input in advance. In general, it can be set as a Gaussian distribution. But, for some actual data like time series, this setting or assumption is not reasonable and effective. In this paper, we propose a specialized pdf for the input of MGP model which is a piecewise-defined continuous function with three parts such that the middle part takes the form of a uniform distribution, while the two side parts take the form of Gaussian distribution. This specialized pdf is more consistent with the uniform distribution of the input than the Gaussian pdf. The two tails of the pdf with the form of a Gaussian distribution ensure the effectiveness of the iteration of the hard-cut EM algorithm for MGPs. It demonstrated by the experiments on the simulation and stock datasets that the MGP model with these specialized pdfs can lead to a better result on time series prediction in comparison with the general MGP models as well as the other classical regression methods." @default.
- W2895528396 created "2018-10-12" @default.
- W2895528396 creator A5067164993 @default.
- W2895528396 creator A5080751925 @default.
- W2895528396 date "2018-01-01" @default.
- W2895528396 modified "2023-09-27" @default.
- W2895528396 title "A Specialized Probability Density Function for the Input of Mixture of Gaussian Processes" @default.
- W2895528396 cites W1499730991 @default.
- W2895528396 cites W1595039761 @default.
- W2895528396 cites W1947913127 @default.
- W2895528396 cites W1987052429 @default.
- W2895528396 cites W2007236156 @default.
- W2895528396 cites W2114355534 @default.
- W2895528396 cites W2115038749 @default.
- W2895528396 cites W2117063635 @default.
- W2895528396 cites W2160299137 @default.
- W2895528396 cites W2292090008 @default.
- W2895528396 cites W2295295550 @default.
- W2895528396 cites W2488546812 @default.
- W2895528396 cites W2504160096 @default.
- W2895528396 cites W2603908693 @default.
- W2895528396 cites W2781929852 @default.
- W2895528396 cites W4211049957 @default.
- W2895528396 cites W97653666 @default.
- W2895528396 doi "https://doi.org/10.1007/978-3-030-01313-4_8" @default.
- W2895528396 hasPublicationYear "2018" @default.
- W2895528396 type Work @default.
- W2895528396 sameAs 2895528396 @default.
- W2895528396 citedByCount "0" @default.
- W2895528396 crossrefType "book-chapter" @default.
- W2895528396 hasAuthorship W2895528396A5067164993 @default.
- W2895528396 hasAuthorship W2895528396A5080751925 @default.
- W2895528396 hasBestOaLocation W28955283962 @default.
- W2895528396 hasConcept C105795698 @default.
- W2895528396 hasConcept C121332964 @default.
- W2895528396 hasConcept C121864883 @default.
- W2895528396 hasConcept C14036430 @default.
- W2895528396 hasConcept C163716315 @default.
- W2895528396 hasConcept C197055811 @default.
- W2895528396 hasConcept C33923547 @default.
- W2895528396 hasConcept C41008148 @default.
- W2895528396 hasConcept C62520636 @default.
- W2895528396 hasConcept C78458016 @default.
- W2895528396 hasConcept C86803240 @default.
- W2895528396 hasConceptScore W2895528396C105795698 @default.
- W2895528396 hasConceptScore W2895528396C121332964 @default.
- W2895528396 hasConceptScore W2895528396C121864883 @default.
- W2895528396 hasConceptScore W2895528396C14036430 @default.
- W2895528396 hasConceptScore W2895528396C163716315 @default.
- W2895528396 hasConceptScore W2895528396C197055811 @default.
- W2895528396 hasConceptScore W2895528396C33923547 @default.
- W2895528396 hasConceptScore W2895528396C41008148 @default.
- W2895528396 hasConceptScore W2895528396C62520636 @default.
- W2895528396 hasConceptScore W2895528396C78458016 @default.
- W2895528396 hasConceptScore W2895528396C86803240 @default.
- W2895528396 hasLocation W28955283961 @default.
- W2895528396 hasLocation W28955283962 @default.
- W2895528396 hasLocation W28955283963 @default.
- W2895528396 hasOpenAccess W2895528396 @default.
- W2895528396 hasPrimaryLocation W28955283961 @default.
- W2895528396 hasRelatedWork W2052605103 @default.
- W2895528396 hasRelatedWork W2087001052 @default.
- W2895528396 hasRelatedWork W2087208962 @default.
- W2895528396 hasRelatedWork W2119158312 @default.
- W2895528396 hasRelatedWork W2552050053 @default.
- W2895528396 hasRelatedWork W2626505118 @default.
- W2895528396 hasRelatedWork W3098582471 @default.
- W2895528396 hasRelatedWork W3109354386 @default.
- W2895528396 hasRelatedWork W4296623967 @default.
- W2895528396 hasRelatedWork W4362578997 @default.
- W2895528396 isParatext "false" @default.
- W2895528396 isRetracted "false" @default.
- W2895528396 magId "2895528396" @default.
- W2895528396 workType "book-chapter" @default.