Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895528580> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2895528580 abstract "Recruitment of appropriate people for certain positions is critical for any companies or organizations. Manually screening to select appropriate candidates from large amounts of resumes can be exhausted and time-consuming. However, there is no public tool that can be directly used for automatic resume quality assessment (RQA). This motivates us to develop a method for automatic RQA. Since there is also no public dataset for model training and evaluation, we build a dataset for RQA by collecting around 10K resumes, which are provided by a private resume management company. By investigating the dataset, we identify some factors or features that could be useful to discriminate good resumes from bad ones, e.g., the consistency between different parts of a resume. Then a neural-network model is designed to predict the quality of each resume, where some text processing techniques are incorporated. To deal with the label deficiency issue in the dataset, we propose several variants of the model by either utilizing the pair/triplet-based loss, or introducing some semi-supervised learning technique to make use of the abundant unlabeled data. Both the presented baseline model and its variants are general and easy to implement. Various popular criteria including the receiver operating characteristic (ROC) curve, F-measure and ranking-based average precision (AP) are adopted for model evaluation. We compare the different variants with our baseline model. Since there is no public algorithm for RQA, we further compare our results with those obtained from a website that can score a resume. Experimental results in terms of different criteria demonstrate effectiveness of the proposed method. We foresee that our approach would transform the way of future human resources management." @default.
- W2895528580 created "2018-10-12" @default.
- W2895528580 creator A5019572221 @default.
- W2895528580 creator A5039158745 @default.
- W2895528580 creator A5041572550 @default.
- W2895528580 creator A5054856233 @default.
- W2895528580 creator A5077999325 @default.
- W2895528580 date "2018-11-01" @default.
- W2895528580 modified "2023-09-24" @default.
- W2895528580 title "ResumeNet: A Learning-Based Framework for Automatic Resume Quality Assessment" @default.
- W2895528580 cites W1672347394 @default.
- W2895528580 cites W1941659294 @default.
- W2895528580 cites W1975517671 @default.
- W2895528580 cites W1983320747 @default.
- W2895528580 cites W1985583020 @default.
- W2895528580 cites W2004080111 @default.
- W2895528580 cites W2045610202 @default.
- W2895528580 cites W2053157787 @default.
- W2895528580 cites W2107913843 @default.
- W2895528580 cites W2108013467 @default.
- W2895528580 cites W2157364932 @default.
- W2895528580 cites W2250539671 @default.
- W2895528580 cites W2584611192 @default.
- W2895528580 cites W2584848220 @default.
- W2895528580 cites W2585828887 @default.
- W2895528580 cites W2768340063 @default.
- W2895528580 cites W2772633765 @default.
- W2895528580 cites W2803557526 @default.
- W2895528580 cites W2963559058 @default.
- W2895528580 cites W2963918774 @default.
- W2895528580 cites W2964164085 @default.
- W2895528580 cites W3098560717 @default.
- W2895528580 cites W3099206234 @default.
- W2895528580 doi "https://doi.org/10.1109/icdm.2018.00046" @default.
- W2895528580 hasPublicationYear "2018" @default.
- W2895528580 type Work @default.
- W2895528580 sameAs 2895528580 @default.
- W2895528580 citedByCount "5" @default.
- W2895528580 countsByYear W28955285802019 @default.
- W2895528580 countsByYear W28955285802021 @default.
- W2895528580 countsByYear W28955285802022 @default.
- W2895528580 countsByYear W28955285802023 @default.
- W2895528580 crossrefType "proceedings-article" @default.
- W2895528580 hasAuthorship W2895528580A5019572221 @default.
- W2895528580 hasAuthorship W2895528580A5039158745 @default.
- W2895528580 hasAuthorship W2895528580A5041572550 @default.
- W2895528580 hasAuthorship W2895528580A5054856233 @default.
- W2895528580 hasAuthorship W2895528580A5077999325 @default.
- W2895528580 hasBestOaLocation W28955285802 @default.
- W2895528580 hasConcept C111368507 @default.
- W2895528580 hasConcept C111472728 @default.
- W2895528580 hasConcept C119857082 @default.
- W2895528580 hasConcept C124101348 @default.
- W2895528580 hasConcept C12725497 @default.
- W2895528580 hasConcept C127313418 @default.
- W2895528580 hasConcept C138885662 @default.
- W2895528580 hasConcept C154945302 @default.
- W2895528580 hasConcept C189430467 @default.
- W2895528580 hasConcept C2776436953 @default.
- W2895528580 hasConcept C2779530757 @default.
- W2895528580 hasConcept C41008148 @default.
- W2895528580 hasConcept C50644808 @default.
- W2895528580 hasConceptScore W2895528580C111368507 @default.
- W2895528580 hasConceptScore W2895528580C111472728 @default.
- W2895528580 hasConceptScore W2895528580C119857082 @default.
- W2895528580 hasConceptScore W2895528580C124101348 @default.
- W2895528580 hasConceptScore W2895528580C12725497 @default.
- W2895528580 hasConceptScore W2895528580C127313418 @default.
- W2895528580 hasConceptScore W2895528580C138885662 @default.
- W2895528580 hasConceptScore W2895528580C154945302 @default.
- W2895528580 hasConceptScore W2895528580C189430467 @default.
- W2895528580 hasConceptScore W2895528580C2776436953 @default.
- W2895528580 hasConceptScore W2895528580C2779530757 @default.
- W2895528580 hasConceptScore W2895528580C41008148 @default.
- W2895528580 hasConceptScore W2895528580C50644808 @default.
- W2895528580 hasLocation W28955285801 @default.
- W2895528580 hasLocation W28955285802 @default.
- W2895528580 hasLocation W28955285803 @default.
- W2895528580 hasOpenAccess W2895528580 @default.
- W2895528580 hasPrimaryLocation W28955285801 @default.
- W2895528580 hasRelatedWork W1546381263 @default.
- W2895528580 hasRelatedWork W2350879319 @default.
- W2895528580 hasRelatedWork W2888099120 @default.
- W2895528580 hasRelatedWork W2949588086 @default.
- W2895528580 hasRelatedWork W2961085424 @default.
- W2895528580 hasRelatedWork W3102392131 @default.
- W2895528580 hasRelatedWork W4286629047 @default.
- W2895528580 hasRelatedWork W4306674287 @default.
- W2895528580 hasRelatedWork W1629725936 @default.
- W2895528580 hasRelatedWork W4224009465 @default.
- W2895528580 isParatext "false" @default.
- W2895528580 isRetracted "false" @default.
- W2895528580 magId "2895528580" @default.
- W2895528580 workType "article" @default.