Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895531254> ?p ?o ?g. }
- W2895531254 endingPage "67" @default.
- W2895531254 startingPage "58" @default.
- W2895531254 abstract "Microbes have been isolated previously from bentonite materials that may be used as barriers for the disposal of radioactive waste. Actively respiring microbes in such barrier materials, within a repository environment, have the potential to adversely affect waste container corrosion rates. Additionally, they could potentially alter the properties of the bentonite barrier itself. This is of significance, since the integrity of the waste container and properties of the bentonite barrier are required to fulfil defined safety functions. To help identify the critical factors that affect microbial activity in bentonite materials, this study examines the impact of a range of parameters that could affect microbial metabolism in a geodisposal environment. Several bentonites from different sources (bentonite mined from locations in Spain and the USA, along with commercially-sourced bentonite) were subjected to increased pressure (74 MPa, 30 s), heat (90 °C, 24 h), and irradiation (1000 Gy, 24.17 Gy min−1), before incubation in growth media selective for sulfate-reducing bacteria (SRB) or iron-reducing bacteria (IRB). The amount of SRB, and IRB were counted using the most probable number method and identified by 16S rRNA gene sequencing. The bentonites initially contained 660–6600 SRB cells g−1, and the number of SRB was correlated with the initial water content of the bentonite. A similar number of IRB was also present (400–4000 cells g−1), and the number of IRB was correlated with the ratio of bioavailable Fe(II)/Fe(III) present in the bentonite. The bentonites hosted sulfate-reducing species from two bacterial genera, with Desulfotomaculum dominating the SRB communities in the Spanish bentonite used in the Full-scale Engineered Barriers Experiment (FEBEX), while the other communities contained Desulfosporosinus species. The nature of the SRB community played a significant role in the microbial community response to different stresses, with the FEBEX material producing high SRB cell counts in response to pressure and irradiation but yielding low numbers in response to heat. Initially, the IRB communities contained a mixture of Gram-negative bacteria such as Geobacter, and Gram-positive spore-forming bacteria such as Bacillus and Desulfosporosinus, with an increase in the number of Gram-positive spore-formers in response to stress. The ability of Gram-positive spore-formers to grow, despite exposure to pressure, heat and irradiation, highlights the need to generate a swelling pressure sufficient to minimise microbial activity. In addition, we suggest that the microbial communities naturally present in the bentonite should be considered as part of the selection process for buffer materials in a geological disposal facility for radioactive waste." @default.
- W2895531254 created "2018-10-12" @default.
- W2895531254 creator A5028241795 @default.
- W2895531254 creator A5054634710 @default.
- W2895531254 creator A5071401224 @default.
- W2895531254 creator A5078743203 @default.
- W2895531254 date "2018-11-01" @default.
- W2895531254 modified "2023-10-14" @default.
- W2895531254 title "Response of bentonite microbial communities to stresses relevant to geodisposal of radioactive waste" @default.
- W2895531254 cites W1560853515 @default.
- W2895531254 cites W1581825364 @default.
- W2895531254 cites W1597278782 @default.
- W2895531254 cites W1931878801 @default.
- W2895531254 cites W1962861052 @default.
- W2895531254 cites W1976452625 @default.
- W2895531254 cites W1978607238 @default.
- W2895531254 cites W1989832480 @default.
- W2895531254 cites W1995473226 @default.
- W2895531254 cites W1998227438 @default.
- W2895531254 cites W2008115350 @default.
- W2895531254 cites W2009689313 @default.
- W2895531254 cites W2024304315 @default.
- W2895531254 cites W2028803460 @default.
- W2895531254 cites W2032900236 @default.
- W2895531254 cites W2036897871 @default.
- W2895531254 cites W2045907781 @default.
- W2895531254 cites W2050046369 @default.
- W2895531254 cites W2059205216 @default.
- W2895531254 cites W2060465554 @default.
- W2895531254 cites W2061967413 @default.
- W2895531254 cites W2064431661 @default.
- W2895531254 cites W2072970694 @default.
- W2895531254 cites W2075287803 @default.
- W2895531254 cites W2077582266 @default.
- W2895531254 cites W2080283023 @default.
- W2895531254 cites W2088833470 @default.
- W2895531254 cites W2089708720 @default.
- W2895531254 cites W2091913250 @default.
- W2895531254 cites W2096439646 @default.
- W2895531254 cites W2096502698 @default.
- W2895531254 cites W2097064342 @default.
- W2895531254 cites W2099404867 @default.
- W2895531254 cites W2101120467 @default.
- W2895531254 cites W2110961381 @default.
- W2895531254 cites W2111838309 @default.
- W2895531254 cites W2113178113 @default.
- W2895531254 cites W2114203829 @default.
- W2895531254 cites W2116279310 @default.
- W2895531254 cites W2117052354 @default.
- W2895531254 cites W2117457769 @default.
- W2895531254 cites W2124351063 @default.
- W2895531254 cites W2132548846 @default.
- W2895531254 cites W2147253083 @default.
- W2895531254 cites W2151121517 @default.
- W2895531254 cites W2152885278 @default.
- W2895531254 cites W2159011504 @default.
- W2895531254 cites W2165390912 @default.
- W2895531254 cites W2312324735 @default.
- W2895531254 cites W2808756465 @default.
- W2895531254 doi "https://doi.org/10.1016/j.chemgeo.2018.10.004" @default.
- W2895531254 hasPublicationYear "2018" @default.
- W2895531254 type Work @default.
- W2895531254 sameAs 2895531254 @default.
- W2895531254 citedByCount "15" @default.
- W2895531254 countsByYear W28955312542019 @default.
- W2895531254 countsByYear W28955312542021 @default.
- W2895531254 countsByYear W28955312542022 @default.
- W2895531254 countsByYear W28955312542023 @default.
- W2895531254 crossrefType "journal-article" @default.
- W2895531254 hasAuthorship W2895531254A5028241795 @default.
- W2895531254 hasAuthorship W2895531254A5054634710 @default.
- W2895531254 hasAuthorship W2895531254A5071401224 @default.
- W2895531254 hasAuthorship W2895531254A5078743203 @default.
- W2895531254 hasBestOaLocation W28955312541 @default.
- W2895531254 hasConcept C107872376 @default.
- W2895531254 hasConcept C127313418 @default.
- W2895531254 hasConcept C127413603 @default.
- W2895531254 hasConcept C13965031 @default.
- W2895531254 hasConcept C178790620 @default.
- W2895531254 hasConcept C185592680 @default.
- W2895531254 hasConcept C187320778 @default.
- W2895531254 hasConcept C194356953 @default.
- W2895531254 hasConcept C25642318 @default.
- W2895531254 hasConcept C2777979977 @default.
- W2895531254 hasConcept C2778343803 @default.
- W2895531254 hasConcept C39432304 @default.
- W2895531254 hasConcept C548081761 @default.
- W2895531254 hasConcept C55493867 @default.
- W2895531254 hasConcept C89690796 @default.
- W2895531254 hasConceptScore W2895531254C107872376 @default.
- W2895531254 hasConceptScore W2895531254C127313418 @default.
- W2895531254 hasConceptScore W2895531254C127413603 @default.
- W2895531254 hasConceptScore W2895531254C13965031 @default.
- W2895531254 hasConceptScore W2895531254C178790620 @default.
- W2895531254 hasConceptScore W2895531254C185592680 @default.
- W2895531254 hasConceptScore W2895531254C187320778 @default.
- W2895531254 hasConceptScore W2895531254C194356953 @default.
- W2895531254 hasConceptScore W2895531254C25642318 @default.