Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895533566> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2895533566 endingPage "63" @default.
- W2895533566 startingPage "39" @default.
- W2895533566 abstract "In recent years, it is seen in many time series applications that innovations are non-normal. In this situation, it is known that the least squares (LS) estimators are neither efficient nor robust and maximum likelihood (ML) estimators can only be obtained numerically which might be problematic. The estimation problem is considered newly through different distributions by the use of modified maximum likelihood (MML) estimation technique which assumes the shape parameter to be known. This becomes a drawback in machine data processing where the underlying distribution cannot be determined but assumed to be a member of a broad class of distributions. Therefore, in this study, the shape parameter is assumed to be unknown and the MML technique is combined with Huber’s estimation procedure to estimate the model parameters of autoregressive (AR) models of order 1, named as adaptive modified maximum likelihood (AMML) estimation. After the derivation of the AMML estimators, their efficiency and robustness properties are discussed through simulation study and compared with both MML and LS estimators. Besides, two test statistics for significance of the model are suggested. Both criterion and efficiency robustness properties of the test statistics are discussed, and comparisons with the corresponding MML and LS test statistics are given. Finally, the estimation procedure is generalized to AR(q) models." @default.
- W2895533566 created "2018-10-12" @default.
- W2895533566 creator A5042463275 @default.
- W2895533566 creator A5059050184 @default.
- W2895533566 date "2018-01-01" @default.
- W2895533566 modified "2023-09-25" @default.
- W2895533566 title "A New Estimation Technique for AR(1) Model with Long-Tailed Symmetric Innovations" @default.
- W2895533566 cites W1964688055 @default.
- W2895533566 cites W1968099229 @default.
- W2895533566 cites W1979794638 @default.
- W2895533566 cites W2063663311 @default.
- W2895533566 cites W2067216711 @default.
- W2895533566 cites W2092633122 @default.
- W2895533566 cites W2124162412 @default.
- W2895533566 cites W2489822048 @default.
- W2895533566 cites W4231660004 @default.
- W2895533566 cites W4235125080 @default.
- W2895533566 doi "https://doi.org/10.1007/978-3-319-96944-2_4" @default.
- W2895533566 hasPublicationYear "2018" @default.
- W2895533566 type Work @default.
- W2895533566 sameAs 2895533566 @default.
- W2895533566 citedByCount "2" @default.
- W2895533566 countsByYear W28955335662019 @default.
- W2895533566 countsByYear W28955335662022 @default.
- W2895533566 crossrefType "book-chapter" @default.
- W2895533566 hasAuthorship W2895533566A5042463275 @default.
- W2895533566 hasAuthorship W2895533566A5059050184 @default.
- W2895533566 hasConcept C162324750 @default.
- W2895533566 hasConcept C187736073 @default.
- W2895533566 hasConcept C28826006 @default.
- W2895533566 hasConcept C33923547 @default.
- W2895533566 hasConcept C41008148 @default.
- W2895533566 hasConcept C96250715 @default.
- W2895533566 hasConceptScore W2895533566C162324750 @default.
- W2895533566 hasConceptScore W2895533566C187736073 @default.
- W2895533566 hasConceptScore W2895533566C28826006 @default.
- W2895533566 hasConceptScore W2895533566C33923547 @default.
- W2895533566 hasConceptScore W2895533566C41008148 @default.
- W2895533566 hasConceptScore W2895533566C96250715 @default.
- W2895533566 hasLocation W28955335661 @default.
- W2895533566 hasOpenAccess W2895533566 @default.
- W2895533566 hasPrimaryLocation W28955335661 @default.
- W2895533566 hasRelatedWork W1523486957 @default.
- W2895533566 hasRelatedWork W1978549505 @default.
- W2895533566 hasRelatedWork W202223177 @default.
- W2895533566 hasRelatedWork W2042188844 @default.
- W2895533566 hasRelatedWork W2393431898 @default.
- W2895533566 hasRelatedWork W2744472438 @default.
- W2895533566 hasRelatedWork W2762536588 @default.
- W2895533566 hasRelatedWork W2979279324 @default.
- W2895533566 hasRelatedWork W3135116463 @default.
- W2895533566 hasRelatedWork W4249876120 @default.
- W2895533566 isParatext "false" @default.
- W2895533566 isRetracted "false" @default.
- W2895533566 magId "2895533566" @default.
- W2895533566 workType "book-chapter" @default.