Matches in SemOpenAlex for { <https://semopenalex.org/work/W2895544590> ?p ?o ?g. }
- W2895544590 endingPage "11" @default.
- W2895544590 startingPage "1" @default.
- W2895544590 abstract "Thermal annealing of zircons prior to uranium-lead dating by laser ablation inductively coupled plasma mass spectrometry is a commonly-implemented procedure which improves data accuracy and precision by partially repairing radiation damage from the decay of uranium and thorium. However, it also leads to significantly higher concentrations of lithium in the zircon lattice, which become positively correlated with trivalent yttrium and rare earth elements. Prior to such treatments, zircons typically contain lithium below detection limits (typically <0.55 μg g−1), unless correlated with lanthanum and aluminum (i.e., melt/mineral inclusion tracer elements). This suggests that lithium in zircon is primarily sequestered within inclusions, and is able to permeate the crystal lattice to couple with yttrium and rare earth elements during the thermal annealing procedure. This process occurs 2–3 orders of magnitude faster than diffusion experiments have previously determined, indicating that another diffusion mechanism may apply. A model is proposed, whereby: (i) charge compensation of stoichiometrically over-abundant trivalent cations under water-rich magmatic conditions is likely accomplished by hydrogen, given the incompatibility of lithium in zircon and the abundance of hydrogen. However, (ii) conditions that are high temperature and low pressure (characteristic of both thermal annealing and the syn-eruptive environment), drive silicate melt inclusions to exsolve water, generating a motive force for both hydrogen and lithium from inclusions to permeate the lattice in order to reestablish electrochemical equilibrium between the interior and exterior of the zircon. To test the pressure dependency of lithium migration in the zircon lattice, thermal annealing experiments were performed at 850 °C and 1 bar, 2 kbar and 6 kbar using zircons from the Fish Canyon Tuff. The experiments demonstrate that thermal annealing at 2 and 6 kbar inhibits lithium mobility, with zircons registering lithium concentrations below detection limits similar to controls. The experimental results suggest that lithium concentrations in zircon are vulnerable to rapid perturbation by decompression (concurrent with high temperatures), which further indicate that lithium-in-zircon diffusion data should be interpreted with caution." @default.
- W2895544590 created "2018-10-12" @default.
- W2895544590 creator A5008707827 @default.
- W2895544590 creator A5012350200 @default.
- W2895544590 creator A5052663025 @default.
- W2895544590 creator A5053738196 @default.
- W2895544590 creator A5056985956 @default.
- W2895544590 creator A5074008486 @default.
- W2895544590 date "2018-11-01" @default.
- W2895544590 modified "2023-10-15" @default.
- W2895544590 title "Controls on lithium concentration and diffusion in zircon" @default.
- W2895544590 cites W1642870583 @default.
- W2895544590 cites W1869545340 @default.
- W2895544590 cites W1946565071 @default.
- W2895544590 cites W1965044054 @default.
- W2895544590 cites W1966548396 @default.
- W2895544590 cites W1971831894 @default.
- W2895544590 cites W1972943156 @default.
- W2895544590 cites W1985915092 @default.
- W2895544590 cites W1989686734 @default.
- W2895544590 cites W2000337258 @default.
- W2895544590 cites W2005475436 @default.
- W2895544590 cites W2015999389 @default.
- W2895544590 cites W2026356562 @default.
- W2895544590 cites W2048562994 @default.
- W2895544590 cites W2054653182 @default.
- W2895544590 cites W2056764298 @default.
- W2895544590 cites W2070096426 @default.
- W2895544590 cites W2072062807 @default.
- W2895544590 cites W2073648231 @default.
- W2895544590 cites W2079414315 @default.
- W2895544590 cites W2087717879 @default.
- W2895544590 cites W2089526438 @default.
- W2895544590 cites W2093369526 @default.
- W2895544590 cites W2095976142 @default.
- W2895544590 cites W2102927140 @default.
- W2895544590 cites W2127705220 @default.
- W2895544590 cites W2134451467 @default.
- W2895544590 cites W2181817599 @default.
- W2895544590 cites W2286975898 @default.
- W2895544590 cites W2318986314 @default.
- W2895544590 cites W2329313478 @default.
- W2895544590 cites W2406085952 @default.
- W2895544590 cites W2426172314 @default.
- W2895544590 cites W2625211324 @default.
- W2895544590 cites W2738169223 @default.
- W2895544590 cites W2755374053 @default.
- W2895544590 cites W2776839379 @default.
- W2895544590 cites W2780385941 @default.
- W2895544590 cites W2782136147 @default.
- W2895544590 cites W2782268880 @default.
- W2895544590 cites W2885322472 @default.
- W2895544590 doi "https://doi.org/10.1016/j.chemgeo.2018.09.038" @default.
- W2895544590 hasPublicationYear "2018" @default.
- W2895544590 type Work @default.
- W2895544590 sameAs 2895544590 @default.
- W2895544590 citedByCount "16" @default.
- W2895544590 countsByYear W28955445902019 @default.
- W2895544590 countsByYear W28955445902020 @default.
- W2895544590 countsByYear W28955445902021 @default.
- W2895544590 countsByYear W28955445902022 @default.
- W2895544590 countsByYear W28955445902023 @default.
- W2895544590 crossrefType "journal-article" @default.
- W2895544590 hasAuthorship W2895544590A5008707827 @default.
- W2895544590 hasAuthorship W2895544590A5012350200 @default.
- W2895544590 hasAuthorship W2895544590A5052663025 @default.
- W2895544590 hasAuthorship W2895544590A5053738196 @default.
- W2895544590 hasAuthorship W2895544590A5056985956 @default.
- W2895544590 hasAuthorship W2895544590A5074008486 @default.
- W2895544590 hasBestOaLocation W28955445901 @default.
- W2895544590 hasConcept C113196181 @default.
- W2895544590 hasConcept C127313418 @default.
- W2895544590 hasConcept C16965475 @default.
- W2895544590 hasConcept C17409809 @default.
- W2895544590 hasConcept C178790620 @default.
- W2895544590 hasConcept C185592680 @default.
- W2895544590 hasConcept C191897082 @default.
- W2895544590 hasConcept C192562407 @default.
- W2895544590 hasConcept C199289684 @default.
- W2895544590 hasConcept C2777855556 @default.
- W2895544590 hasConcept C2778849375 @default.
- W2895544590 hasConcept C2779851234 @default.
- W2895544590 hasConcept C43617362 @default.
- W2895544590 hasConcept C512968161 @default.
- W2895544590 hasConcept C531131001 @default.
- W2895544590 hasConcept C555451288 @default.
- W2895544590 hasConceptScore W2895544590C113196181 @default.
- W2895544590 hasConceptScore W2895544590C127313418 @default.
- W2895544590 hasConceptScore W2895544590C16965475 @default.
- W2895544590 hasConceptScore W2895544590C17409809 @default.
- W2895544590 hasConceptScore W2895544590C178790620 @default.
- W2895544590 hasConceptScore W2895544590C185592680 @default.
- W2895544590 hasConceptScore W2895544590C191897082 @default.
- W2895544590 hasConceptScore W2895544590C192562407 @default.
- W2895544590 hasConceptScore W2895544590C199289684 @default.
- W2895544590 hasConceptScore W2895544590C2777855556 @default.
- W2895544590 hasConceptScore W2895544590C2778849375 @default.
- W2895544590 hasConceptScore W2895544590C2779851234 @default.